
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:10, 2014

1343

 

 

 
Abstract—The article presents the results of the application of 

artificial neural networks to separate the fluorescent contribution of 
nanodiamonds used as biomarkers, adsorbents and carriers of drugs 
in biomedicine, from a fluorescent background of own biological 
fluorophores. The principal possibility of solving this problem is 
shown. Use of neural network architecture let to detect fluorescence 
of nanodiamonds against the background autofluorescence of egg 
white with high accuracy - better than 3 ug/ml. 
 

Keywords—Artificial neural networks, fluorescence, data 
aggregation.  

I. INTRODUCTION 

UE to the intensive development of biomedicine there is 
a need to develop ultra-sensitive and highly reproducible 

methods for the detection of proteins, single cells and genes, 
as well as imaging biomarkers. The most common way of 
imaging is the method using fluorescence (FL). The main 
difficulty of this method is to separate the desired signal of 
fluorescent biomarker from the background fluorescence of 
fluorophores of biological tissues. The most important 
autofluorophores are tryptophan, phenylalanine, tyrosine, 
collagen, flavoproteins and flavin, beta-carotene, porphyrins, 
nucleic acids, cofactors, vitamins, pigments and other. Tissue 
autofluorescence spectrum is the result of superposition of a 
large number of FL bands of these fluorophores and occupies 
range from 250 nm to 700 nm (Fig. 1). 

This autofluorescence makes it difficult to observe the 
processes and movement of fluorescent nanoparticles. 
Therefore it is important to elaborate a method of separation 
of the fluorescent signal of the nanoparticles from the 
background of the fluorescence of biological tissues and the 
control of its change to ensure tracking biomarkers. 

There are two major approaches to overcome the problem 
of background fluorescence: 1) synthesis of new biomarkers 
with minimum overlap of their emission spectra with the 
background fluorescence [2]-[21]; 2) development of 
advanced experimental techniques permitting one to decrease 
the background signal [22]-[30]. 
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Fig. 1 Spectra of fluorescence of own fluorophores of biological 
tissues [1] 

 
In this paper, a new approach to solve the inverse problem 

of separation of the fluorescent signal of the nanoparticles 
from the autofluorescence background using artificial neural 
networks (ANN) is suggested [31]. A row of methods and 
models that can be used for detection and recognition of 
objects by their images was proposed by authors [32]-[34]. An 
especial feature of using such methods to solve specific 
practical problems is that the solution of each of them requires 
a new specific additional research and development. 
Therefore, along with the use of well-known methods in their 
classical form, an active research towards further 
improvement of the accuracy and efficiency of neural network 
solution of different inverse problems is continued. [35]-[37]. 
It is very promising now to use ANN for solution of such 
problems as classification of proteins, selection of genome 
fragments, recognition of signal peptides and transmembrane 
helices etc. [38]. In [39], [40] the method of breast cancer 
diagnosis based on artificial neural network classification was 
proposed. The inverse problem of autofluorescence 
recognition of civilized cell culture and cancer cells was 
solved. Total synchronous fluorescence spectra of normal 
skin, nevus and melanoma samples were used as input for 
training of artificial neural networks. Two different types of 
artificial neural networks were trained, the self-organizing 
map and the feed-forward neural network. Histopathology 
results of investigated skin samples were used as the gold 
standard for network output. Based on the obtained 
classification success rate of neural networks, Dramiґcanin, 
Zekoviґc et al. [39] concluded that both networks provided 
high sensitivity with classification errors between 2 and 4%. 
Despite the extremely wide application of pattern recognition 
methods in biomedicine, this paper is the first application of 
these methods for detection of fluorescence of nanoparticles in 
the presence of background autofluorescence to the authors’ 
knowledge. 

This paper shows fundamental possibility of optical 
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imaging fluorescent biomarkers in a biological environment 
using neural network algorithms. In addition, in this work the 
quantitative threshold of the sensitivity of the method was 
determined: the estimation of the minimal concentration of 
nanoparticles that can be confidently detected by ANN against 
the background of autofluorescence.  The search of the ways 
to improve the sensitivity of the method, and a study of the 
practical stability of the solution of this inverse problem, were 
performed. 

II. EXPERIMENT 

A. Objects of Research 

Nanodiamonds (NDs) G01 (PlasmaChem) were used as 
fluorescent biomarkers. Nanodiamond particles are very 
promising material for biomedicine, because of the stable and 
intense properties of fluorescence and absorption [12], [13], as 
well as NDs are biocompatible particles, unlike organic dyes 
and semiconductor quantum dots. Bidistilled deionized water 
was used for the preparation of aqueous suspensions of 
nanodiamonds. Aqueous suspensions were prepared with a 
concentration of G01 1 g/l. Suspensions were treated during 2 
hours in ultrasonic bath (Bandelin Sonorex rk 31). 

Egg white was chosen as a biological environment. This 
choice is justified by the fact that in this case nanoparticles are 
delivered directly into the cell, because the whole egg white is 
a single cell. Also the choice associated with representative 
natural fluorophores in the egg white. Later in the elaboration 
of neural network techniques of solution of stated problem in 
order to improve the stability of the trained ANN to changes in 
biological objects egg whites of different periods and different 
manufacturers were used. 

B. Experimental Setup 

Fluorescence and Raman spectra of aqueous suspensions of 
nanodiamonds and biological objects containing nanoparticles 
were excited by a diode laser (wavelength 405 nm, power 
incident on the sample ~50 mW). Spectra were recorded by 
PMT in the range 430-750 nm. Practical spectral resolution 
was 0.5 nm. Temperature of the samples was stabilized at 
22.0±0.1ºC. Spectra were corrected for the laser power and 
data acquisition time. Further mathematical data processing 
consisted of the subtraction of the background caused by light 
scattering in the cuvette with sample and normalization of the 
obtained spectra to the area under the Raman valence band of 
water. 

C. Analysis of the Fluorescence Spectra of Egg White with 
Introduced Nanodiamonds 

Fig. 2 shows Raman and fluorescence spectra of water, egg 
white, aqueous suspensions of NDs and egg white with 
introduced nanoparticles. The spectral band near 470 nm is the 
Raman valence band of water (percentage of water in the egg 
white is 85%). 

As it can be seen from Fig. 2 when fluorescence signal is 
excited by radiation with wavelength 405 nm, ND fluoresces 
in the region 430-680 nm with the maximum near 520-525 
nm. Egg white fluoresces in the region 420-700 nm with 

maximum which varies for different eggs within 480-520 nm. 
The FL spectrum of egg white is a result of a superposition of 
different organic compounds: pyridoxine, NADH, flavin, lipo-
pigments. The weak FL bands in the region 640 - 670 nm are 
due to porphyrins fluorescence. Thus, fluorescence spectra of 
nanoparticles and egg white are largely overlapping 
structureless bands. They differ in the position of maximum 
and boundaries of fluorescence bands. It is a precondition for 
successful extraction of contribution of nanoparticles. 

 

 

Fig. 2 Raman and fluorescence spectra of water, egg white, aqueous 
suspensions of NDs (G01) and egg white containing  NDs 

 
Obviously, if the concentration of nanoparticles in egg 

white changes, the band of total fluorescence varies 
significantly for several reasons. The main reasons are as 
follows 1) at change of concentration of nanoparticles the 
intensity of their own fluorescence changes; 2) due to the 
different interactions of NDs with components of white, both 
fluorescence of white and that of nanoparticles change. These 
interactions are very complex and still not interpreted. For 
these reasons, it is impossible to construct a mathematical 
model of change of total  fluorescence of egg white and 
nanoparticles at change of their concentrations (for example, 
during movement of nanoparticles in biological tissue) by 
conventional methods. This means that the traditional 
mathematical methods cannot solve either direct or inverse 
problem of extracting the fluorescent contribution of varying 
amount of nanoparticles against the background of the 
fluorescence of egg white. This is one more reason to use the 
algorithms of artificial neural networks (ANN). 

III. METHODS AND APPROACHES 

In this study, to solve the pointed inverse problem of optical 
visualization the following methods and techniques were 
elaborated: 

1) Method of Detection of ND Fluorescence against the 
Background of Autofluorescence of Biotissue by Total FL 
Spectrum of the Sample 

The considered problem is the simplest variant of 
classification problem - determination of the belonging of a 
pattern to one of two non-crossing classes (nanoparticles 
present - no nanoparticles). In solution of this classification 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:10, 2014

1345

 

 

problem, it is necessary to take into account specifics of input 
data, where there are no individual features allowing one to 
ascertain confidently belonging of the pattern, i.e. it is not a 
problem of classical spectral analysis. On the contrary, spectra 
of fluorescence of nanoparticles and biofluorophores almost 
completely overlap, although they have different shape. This 
peculiarity causes expediency of application of neural network 
methods for solution of the stated problem and requires 
elaboration of correct methodology of its solution. This 
methodology includes elaboration of procedure of data 
preparation, determination of optimal neural network 
architectures, algorithms and parameters of their training. 

2) Method of Determination of ND Minimal Concentration, 
When the Presence of Nanoparticles is Confidently Detected 
against the Background of Proper Fluorescence of Biotissue 

This means determination of the threshold of sensitivity of 
the method on the whole. It is clear that the numeric value of 
this threshold depends both on methodology of experiment 
and on further data handling. 

3) Use and Comparison of Algorithms of Input Data 
Compression 

One of the traditional problems arising in work with 
spectroscopic data is very high dimensionality of the input 
data, as a spectrum is usually registered in several hundred or 
even thousand channels. At the same time, the number of 
patterns for ANN training when using the “experiment-based” 
approach (ANN training using only experimental data) 
corresponds to the number of measured spectra, and therefore 
it is substantially limited [41]. Both of these factors reduce the 
ratio of the number of patterns and the number of input 
features. This is unfavorable for ANN training. Therefore, it is 
necessary to elaborate a method to reduce the dimensionality 
of the input data space. 

Use of ANN for solution of inverse problems of optical 
spectroscopy is possible in the context of three approaches: 
“model-based”, “experiment-based”, “quasi-model” [41]. In 
the “model-based” approach, to obtain the data for ANN 
training, an existing analytical or computational model of 
solution of the direct problem is used. In the considered 
problem of recognition of fluorescent contribution of ND 
against the background of fluorescence of egg white, the 
“model-based” approach cannot be used because of lack of 
correct analytical description of fluorescence spectra of ND 
and egg white. In the “quasi-model” approach, model spectra 
are used to obtain representative data sets. A parametrical 
“quasi-model” is constructed for description of spectra on the 
base of a moderate set of experimental data, and then it is used 
to calculate the complete data array. Because of the object of 
study is a living biological material, and its state can vary 
significantly with time, it is especially important to train the 
ANN on real signals of objects containing noise. This is the 
reason why the inverse problem was solved by ANN in the 
frameworks of "experimental-based" approach. 

In the "experimental-based" approach experimental data are 
used to train the neural network. The disadvantage of this 

approach is the low representativity of sets since obtaining of 
immense experimental material is a reasonably tedious work. 
The main advantages of this approach are the following: when 
ANN trains directly on experimental data, all molecular 
interactions are taken into account; the network is trained with 
real instrumental noise which raises accuracy of solution of 
inverse problems. 

The considered problem in its original formulation is 
characterized by extremely unfavorable ratio of the number of 
examples in the training set and the number of input features. 
Thus, an important area of research is the use of algorithms for 
reducing the input dimension of the problem, which means 
reducing the number of input features. The previous studies 
made by the authors of this work [42] showed that one of the 
most efficient ways to reduce the dimensionality of the 
spectroscopic data is the aggregation of channels. New 
composed features constitute sums of intensities in several 
adjacent spectral channels. Apart from possible improvement 
of the quality of solution of the problem, this approach in case 
of success can allow using considerably less expensive 
equipment with significantly lower spectral resolution. 

IV. RESULTS AND DISCUSSION 

A. Obtaining Experimental Data  

Two series of Raman and fluorescence spectra were 
obtained for two different egg whites with injected NDs. The 
concentration of NDs varied in the range from 0 to 30 ug/ml 
with increments 1.5 ug/ml. Fig. 3 shows some of experimental 
Raman + FL spectra of NDs with egg white with different 
concentrations. The obtained datasets for ND were used for 
work with ANN. 
 

 

Fig. 3 Some of the spectra from one of the series of Raman and 
fluorescence spectra of egg whites with different concentrations of 

introduced ND 

B. Use of ANN 

For realization of "experimental-based" approach to ANN 
training, the experimental data was divided into three sets: 
training, test and examination. Training set is used for actual 
ANN training (weights adjustment), test - for periodic testing 
of the learning process in order to determine the moment of 
termination of the training and to prevent network 
overtraining, examination - to check the quality of network on 
independent data. In this paper, this partitioning was carried 
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out randomly in the ratio of 70:20:10 (training: test: 
examination). As a result, for the spectra of egg white with 
NDs the sets 45:12:6 (total 63) were obtained. For an objective 
evaluation of the quality of networks, averaging over ten 
random partitions for each type of dimension reduction of 
input data was conducted. 

The following adaptive algorithms were used to work with 
this problem: 
1) A perceptron with a single hidden layer (with 10 neurons 

in a single hidden layer), trained by back propagation 
algorithm [31], [43] with the following parameters: the 
transfer function in the hidden and output layers - 
hyperbolic tangent, learning rate 0.01, moment 0.5, the 
initial dispersion of weights 0.3, random order of 
presentation of examples, stop after 100,000 events after 
the minimum of the error on the test dataset. 

2) A General Regression Neural Network (GRNN) [28]. For 
GRNN, two variants were considered: with unified 
smoothing factor (USF) selected by step by step method, 
and with individual corrections to the smoothing factor 
(ICSF) for every input feature. In the second case, the 
values of the corrections, as well as the values of the main 
smoothing factor, were selected by genetic algorithm [31]. 
In both cases, selection was performed by minimal 
squared error on test set. 

Software package NeuroShell 2 [44] was used for all 
calculations. 

Table I shows the results obtained using the perceptron with 
a single hidden layer and two variants of GRNN on three data 
sets (training, test, exam). The results obtained on the 
examination set are the most informative. As statistics values, 
Table I shows the coefficient of multiple determination R 
square [41] and the mean absolute error (MAE) of measuring 
the concentration of ND. 

 
TABLE I 

VALUES OF THE COEFFICIENT OF MULTIPLE DETERMINATION R SQUARED ON 

DIFFERENT DATA SETS FOR DIFFERENT ALGORITHMS OF DATA PROCESSING 

Algorithm \ 
Data set 

Training Test Exam 
MAE of exam 

set, ug/ml 

Perceptron 0.995 0.897 0.879 2.41 

GRNN, USF 0.987 0.878 0.793 3.04 

GRNN, ICSF 0.991 0.890 0.868 2.78 

 
As it can be seen from Table I, the best results on the 

examination data set are obtained using the perceptron with a 
single hidden layer. Further calculations were carried out only  
using this architecture of ANN, which provided the error in 
determination of the concentration of ND in the egg white 
2.41 ug/ml for a given data partition. 

C. Use and Comparison of Algorithms of Input Data 
Compression 

As already mentioned, the problem is characterized by 
extremely unfavorable ratio of the number of examples in the 
training set (45) and the number of input features (651). 
Therefore, the compression of the input data was carried out in 
two ways: aggregation of the channels of the spectrum and 

selection of the most essential characteristics using standard 
deviation of the channel values, proportional to the amount of 
information contained in that channel. 

Tables II and III show the best results obtained with a 
perceptron with a single hidden layer on exam sets, for one 
partitioning into training, test and examination sets, and then 
averaged over 10 random partitionings - for the original 
dataset and after compression of input features. Aggregation is 
carried over 2, 4, 6 and 8 channels. The best results were 
demonstrated by aggregation over 4 channels, and they are 
shown in Tables II and III. 

 
TABLE II 

RESULTS FOR THE BEST PARTITIONING BY ERROR ON EXAMINATION DATASET 

 
Type of 

preprocessing 
Number of 
channels 

R2 on the 
training set 

Average error on 
the examination 

set, ug/ml 

ND, 63 
examples; 
partition 
45:12:6 

Without 
preprocessing 

651 0.9948 2.41 

Aggregation 165 0.9954 1.04 

Selection 330 0.9954 0.91 

 
TABLE III 

RESULTS OF AVERAGING OVER TEN DIFFERENT PARTITIONINGS: MEAN ± 

STANDARD DEVIATION 

 
Type of 

preprocessing 

Number 
of 

channels 

R2 on the 
training set 

Average error on 
the examination 

set, ug/ml 
ND, 63 

examples; 
partition 
45:12:6 

Without 
preprocessing 

651 0.837±0.106 4±2 

Aggregation 165 0.832±0.112 3.5±1.6 
Selection 330 0.910±0.084 2.5±1.0 

 

As it can be seen in Table III, the error on examination set 
for the initial array of data for ND is on the average 4 ug/ml. 
The high value of the coefficient of multiple determination R2 
should be noted. It indicates effective learning of ANN. 

It can be seen from these results, that both methods of 
reduce of dimension of input features allow to decrease the 
error. In the case of aggregation, significant features are 
concentrated in a smaller number of channels without loss of 
representativity. In the case of neglecting unimportant features 
the same principle operates: the network is trained better when 
more information is concentrated in fewer input features 
without loss of representativity. Table I shows the best results 
obtained by the aggregation over 4 channels. However, the 
removal of uninformative channels turned out to be more 
effective. As a result, the average error on the examination set 
decreased by one and a half. 

Besides the possible improvement of the quality of the 
problem solutions, compression of input features, if 
successful, can afford to use much less expensive equipment 
with a significantly lower spectral resolution. Thus, the 
aggregation over 4 channels corresponds to "desensitization" 
of spectral resolution of registration devices by 4 times (from 
0.5 nm to 2 nm). Spectral range of registration is usually 
chosen in such a way to include the entire bands of objects. 
Discarding unimportant input features allows to select the 
most informative region of the spectra and to use the device 
with registration in the narrow spectral range. 

Thus, the results of the use of ANN showed the principal 
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possibility of solving the problem of separation of the 
fluorescent contribution of nanodiamonds from the 
background autofluorescence. After reducing the dimension of 
the input data features, the attained accuracy of determination 
of the concentration (on examination set) in the studied 
volume is up to 3 ug/ml for ND, which is also equal to the 
minimum detectable concentration of nanoparticles. 

V. CONCLUSIONS 

In this paper the principal possibility of solving the inverse 
problem of optical imaging – extraction of fluorescence of 
nanoparticles against the background of the autofluorescence 
of the biological environment using neural network algorithms 
was demonstrated. It is shown that used methods allow to 
detect ND fluorescence against the background of the 
autofluorescence of egg white with a sufficiently low 
threshold of detecting concentration. It was also shown that 
the use of the input data compression by aggregation or 
selection of initial spectral channels can further improve the 
accuracy of solving the inverse problem in 1.5 times.  

Some advantages of the proposed method of imaging 
fluorescent nanoparticles in biological tissues should be noted. 
1. In this study the successful application of ANN for 

detection of nanoparticles in biological objects using the 
fluorescent signal (i.e. for the case of fluorescence 
spectroscopy, when only simple and cheap equipment is 
required) was demonstrated. Obviously, in this case it is 
possible to operate with the blood, skin or subsurface 
vessels. But so far it is impossible to obtain a fluorescence 
signal from the deeper layers of the biological system. 
Nevertheless, the elaborated method can be used for 
detection of signal from deeper layers of bioobject (for 
example, when X-ray sources of excitation are used). 

2. An important advantage of using ANN is that the training 
of neural networks occurs already considering all possible 
interactions of nanoparticles with biomacromolecules. Of 
course, here it is intended to work with specified object. 
For another bioobject and other nanoparticles new 
training ANN is required using appropriate experimental 
sets. 
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