The Statistical Properties of Filtered Signals

In this paper, the statistical properties of filtered or convolved signals are considered by deriving the resulting density functions as well as the exact mean and variance expressions given a prior knowledge about the statistics of the individual signals in the filtering or convolution process. It is shown that the density function after linear convolution is a mixture density, where the number of density components is equal to the number of observations of the shortest signal. For circular convolution, the observed samples are characterized by a single density function, which is a sum of products.





References:
<p>[1] K. F. Bernhard, ” On Sums of Random Variables and Independence, ”
The American Statistician, vol. 40, no. 3, pp. 214-215, 1986.
[2] S. Beheshti, and M. A. Dahleh, ”A new Information-Theoretic Approach
to Signals Denoising and Best Basis Selection, ” IEEE Transactions on
Signal Processing, vol. 53, no. 10, pp. 3613-3624, 2005.
[3] Il Kyu Eom, and Yoo Shin Kim, ”Wavelet-Based Denoising with
Nearly Arbitrary Shaped Windows, ” IEEE Signal Processing Papers,
vol. 11, no. 12, pp. 937-940, 2004.
[4] A. D. Russo, ”Calculation of Output Noise Variances for Discrete Time-
Invariant Filters, ” IEEE Transactions on Aerospace and Electronic
Systems, vol. 3, no. 5, pp. 779-783,1967.
[5] A. Das, and B. D. Rao, ”SNR and Noise Variance Estimation for MIMO
Systems, ” IEEE Transactions on Signal processing, vol. 60, no. 8, pp.
3929-3941, 2012.
[6] O. Dikmen, and A. T. Cemgil, ”Unsupervised Single-Channel Source
Separation using Bayesian NMF, ” IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, pp 93-96, 2009.
[7] M. H. Radfar, and R. M. Dansereau, ”Single-Channel Speech Separation
Using Soft Mask Filtering, ” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 15, no. 8, pp. 2299-2310, 2007.
[8] G. J. Jang, T. W. Lee, Y. H. Oh, ”Single Channel Signal Separation using
Time-Domain Basis Functions, ” IEEE Signal Processing Letters, vol. 10,
no. 6, Jun. 2003.
[9] T. Kim, H. T. Attias, S. Y. Lee, and T. W. Lee, ”Blind Source Separation
Exploiting Higher Order Frequency Dependencies, ” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 15, no. 1, 2007.
[10] A. Antoniadis, E. Paparoditis, and T. Sapatinas, ”A Functional Wavelet-
Kernel Approach for Time Series Prediction, ” Journal of the Royal
Statistical Society, vol. 68, no. 5, pp. 837-857, 2006.
[11] D. R. Kahl, and J. Ledolter ”A Recursive Kalman Filter Forecasting
Approach, ” Management Science, vol. 29, no. 11, pp. 1325-1333, 1983.
[12] C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, and C. Cobelli,
”Neural Network Incorporating Meal Information Improves Accuracy of
Short-Time Prediction of Glucose Concentration, ” IEEE Transactions on
Biomedical Engineering, vol. 59, no. 6, pp. 1550-1560, 2006.
[13] C. H.Wu, J. M. Ho, and D. T. Lee, ”Travel-Time Prediction with Support
Vector Regression, ” IEEE Transactions on Intelligent Transportation
Systems, vol. 5, no. 4, pp. 276-281, 2004.
[14] J. Rice, and E. van Zwet, ” A Simple and Effective Method for
Predicting Travel Times on Freeway, ” IEEE Transactions on Intelligent
Transportation Systems, vol. 5, no. 3, pp. 200-207, 2004.
[15] L. A. Goodman, ”On the Exact Variance of Products, ” Journal of the
American Statistical Association, vol. 55, no. 292, pp. 708-713, 1960.
[16] L. A. Goodman, ”The Variance of the Product of K Random Variables,
” Journal of the American Statistical Association, vol. 57, no. 297, pp.
54-60, 1962.
[17] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
2nd Edition, New York: McGraw-Hill, 1984.</p>