
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:5, 2013

825

The Statistical Properties of Filtered Signals
Ephraim Gower, Thato Tsalaile, Monageng Kgwadi and Malcolm Hawksford.

Abstract—In this paper, the statistical properties of filtered or
convolved signals are considered by deriving the resulting density
functions as well as the exact mean and variance expressions given
a prior knowledge about the statistics of the individual signals in the
filtering or convolution process. It is shown that the density function
after linear convolution is a mixture density, where the number of
density components is equal to the number of observations of the
shortest signal. For circular convolution, the observed samples are
characterized by a single density function, which is a sum of products.

Keywords—Circular Convolution, linear Convolution, mixture den-
sity function.

NOTATION

A signal is a group of observations, and these are
represented in vector form. For example, xi(n) =
[xi(1), xi(2), · · · , xi(Ki)] is a vector for the ith signal, for
iε[1, N ], whose observations are xi(n), for nε[1,Ki], where
Ki is the length of the ith signal. Given a vector xi(n), the
variable Xi (capital letter with a corresponding subscript) is
defined where its possible values are the vector elements or
observations, and for Xi we define the density function p(xi)
summarizing the statistical properties of its observations.

I. INTRODUCTION

IT is well known that the probability density function of
the sum of signals

∑N
i=1 xi(n) is the convolution of their

density functions p(x1) ∗ p(x2) ∗ · · · ∗ p(xN ), where * is the
convolution operator and p(xi) is the density function of the
signal xi(n) [1]. However the reverse problem, meaning the
study of the statistical properties of the convolution or filtered
signal z(n) = x1(n) ∗ x2(n) ∗ · · · ∗ xN (n) has received little
to no attention. As filtering is a typical process in signal
processing applications, it is the focus of this paper to derive
the density functions, as well the exact mean and variance
expressions, for the resulting linear and circular convolution
signals given a prior knowledge about the statistics of the
individual signals in the convolution process. The aim is
to provide an understanding of the statistical properties and
transformations to a signal once it has gone through some
filtering or convolution process.

In engineering applications, convolution is usually between
an input signal and some vector of coefficients, such as a filter,
and it is sometimes necessary to estimate the first and second
moments of the underlying signals for subsequent processing.
For example, in signal denoising some methods rely on
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estimating the noise variance [2]-[5], and in blind single
channel source separation knowledge of the variances of the
underlying source signals can be crucial [6]-[9]. Most single
channel source separation algorithms assume instantaneous
mixing, such as the one in [6], yet in practical situations like
with the cocktail party problem the source signals are filtered
by the room impulse responses [9]. A strong prior knowledge
is usually required in these ill-determined conditions such as
the variance of the signals [7], or certain time-domain basis
functions [8]. For filtering processes, then an understanding of
the statistical properties of the filtered signals is essential as
the separation algorithms are very sensitive to modeling errors.

Prediction applications rely on the use of filters, such as
wavelet [10] or Kalman [11] based filtering. These are useful
in finance, economics, biomedical engineering for prediction
of certain processes such as the short-time prediction of
glucose concentrations [12] and intelligent transportation
systems [13], [14] for traffic prediction which helps to
optimize routing algorithms for controlling traffic build up.
Since any sequence prediction process is basically point
estimation, there is always some uncertainty associated with
the future expected points where the lower bound in the
uncertainty is governed by the Fisher-Cramer-Rao (FCR).
If the FCR bounds of the predicted sequences are known,
then the model which offers the least uncertainty is usually
preferred. This is perhaps one of the most driving reasons
to study the statistical properties of filtered signals as by
the law of large numbers the exact variance expression is
essentially the FCR bound to a known scale. Given the
mean and variance of the input signal as well as for the
prediction model’s coefficients are known, the lower bound in
uncertainty associated with the prediction can be calculated
as will be shown in this paper, offering invaluable information
for the choice of the least risk/variance prediction process.

This paper is structured as follows: In Section II we derive
the density function for the linear convolution of two signals,
followed by derivations of the exact mean and variance expres-
sions. Section III considers a more general case of N signals.
In Section IV circular convolution of N signals is considered.
Discussions and summary remarks are in Section V.

II. LINEAR CONVOLUTION OF TWO SIGNALS

Let z(n) = x1(n) ∗ x2(n) be the convolution of the two
signals x1(n) and x2(n). The observations of z(n) are given
by:

z(n) =
∑
r x1(r)x2(n− r) = x1(1)x2(n− 1)

+x1(2)x2(n− 2) + · · ·+ x1(n− 1)x2(1) (1)
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for n ∈ [1,K1 +K2 − 1], where Ki is the total number
of observations of the signal xi(n), for iε [1, N ] , and xi(r)
is the rth observation of xi(n), for rε [1,Ki]. Assuming
that K1 ≥ K2, an observation of z(n) is the sum of the
product of the observations of the signals x1(n) and x2(n)
as illustrated in (1), where K2 is the limiting length of the
number of sum terms. Let pj(z) be the generating density
function of an observation derived from the sum of j products.
For example, z(1) and z(K1 + K2 − 1) would be drawn
from p1(z), and z(K2 − 1) and z(K1 + 1) from pK2−1(z).
It follows that the variable Z, realised by the observations
of the signal z(n), is a mixture of K2 variables where
p1(z),p2(z), . . . , pK2−1(p) constitute two observations each
and pK2(z) constitutes K1 −K2 + 1 observations. Therefore
the density function of Z is the mixture

p(z) =

K2∑
j=1

wjpj(z)

where wj is the relative weight of pj(z) in the mixture
and

∑K1

j=1 wj = 1. As the number of observations from each
density function is known, it is clear that w1 = w2 = ... =
wK−1 = 2

K1+K2−1 and wK2
= K1−K2+1

K1+K2−1 , thus the density
function of th signal z(n) resulting from the linear convolution
of two signals is

p(z) =
2

K1 +K2 − 1

K2∑
j=1

pj(z) +
K1 −K2 + 1

K1 +K2 − 1
pK2

(z) (2)

A. The Mean of a Sum of Identical Products

If μXi
= E [Xi] is the mean of Xi, the variable realized by

the observations of the signals xi(n), for iε [1, N ], where E [·]
is mathematical expectation, the mean of the product variable
X1X2 is μX1X2 = E [X1X2]. Thus, the mean of the density
function pj(z) is

μj = j · μX1,X2
, for jε [1,K2] (3)

since the expectation of a sum is the sum of expectations.

B. The Variance of a Sum of Identical Products

Let σ2
Xi

= E
[
X2
i

]−μ2
Xi

be the variance of Xi, for iε [1, N ].
In [15, 16], the exact variance of a product is derived for
independent variables X1 and X2 as:

σ2
X1X2

= μ2
X1
σ2
X2

+ μ2
X2
σ2
X1

+ σ2
X1
σ2
X2
,

and if they are not necessarily independent

σ2
X1X2

= μ2
X1
σ2
X2

+ μ2
X2
σ2
X1

+ 2μX1
μX2

E11

+2μX1
E12 + 2μX2

E21 + E22 − E2
11

where Eij = E
[
(X1 − μX1)

i(X2 − μX2)
j
]
. Taking note

that the variances of the products in the sum given by (1) are
identical (because all observations of X1 and X2 are drawn
from p(x1) and p(x2) respectively), if the observations of X1

are drawn independently from p(x1) as well as those of X2

from p(x2), the variance of pj(z) is given by:

σ2
j = j · σ2

X1,X2
, for jε [1,K2] (4)

because the variance of a sum is the sum of variances for
independent and identical products [17]. If the observations are
not drawn independently from their respective distributions,
then it is shown in [17] that the net variance is the sum of
the permutations of the covariance matrices of all the product
variables in the sum. Since in this case the sum terms are
identically distributed,

σ2
j = j2 · σ2

X1,X2
, for jε [1,K2] (5)

C. The Mean of a Linear Convolution of Two Signals

The mean μZ of the variable Z, representing the signal
z(n) = x1(n) ∗ x2(n), is given by

μZ = E [Z] =

∫ ∞

−∞
z · p(z)dz

Using (2),

μZ =
2

K1 +K2 − 1

K2−1∑
j=1

∫ ∞

−∞
z · pj(z)dz

+
K1 −K2 + 1

K1 +K2 − 1

∫ ∞

−∞
z · pK2

(z)dz

=
2

K1 +K2 − 1

K2−1∑
j=1

μj +
K1 −K2 + 1

K1 +K2 − 1
μK2

By (3),

μZ =
2μX1X2

K1 +K2 − 1

K2−1∑
j=1

j +
K2(K1 −K2 + 1)

K1 +K2 − 1
μX1X2

The sum
∑K2−1
j=1 j = K2(K2−1)

2 , therefore the mean of the
signal z(n) can be expressed as

μZ =
K1K2

K1 +K2 − 1
μX1X2

(6)

D. The Variance of a Linear Convolution of Two Signals

The variance σ2
Z of the variable Z, realized by the obser-

vations of the signal z(n) = x1(n) ∗ x2(n), is given by

σ2
Z = E

[
Z2

]− μ2
Z =

∫ ∞

−∞
z2.p(z)dz − μ2

Z

The integral
∫∞
−∞ z2.p(z)dz =

∑K2

j=1 wj
∫∞
−∞ z2pj(z)dz, and

since

σ2
j =

∫ ∞

−∞
(z − μj)2pj(z)dz =

∫ ∞

−∞
z2pj(z)dz − μ2

j ,

it implies that
∫∞
−∞ z2pj(z)dz = σ2

j + μ2
j , thus

σ2
Z =

K2∑
j=1

wj(σ
2
j + μ2

j )− μ2
Z .
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For independent observations of Xi from p(xi) (for the signal
xi(n)), using (2), (3) and (4)

σ2
Z =

2

K1 +K2 − 1

⎛⎝σ2
X1X2

K2−1∑
j=1

j + μ2
X1X2

K2−1∑
j=1

j2

⎞⎠
+
K1 −K2 + 1

K1 +K2 − 1

(
K2σ

2
X1X2

+K2
2μ

2
X1X2

)− μ2
Z

Noting that
∑K2

j=1 j = K2(K2−1)
2 and the sum of squares∑K2−1

j=1 j2 = K2(K2−1)(2K2−1)
6 , the variance of the signal

z(n) can be expressed as

σ2
Z =

K2

K1 +K2 − 1
ς − μ2

Z (7)

where ς =

(
K1σ

2
X1X2

+
3K1K2 −K2

2 + 1

3
μ2
X1X2

)
If the observations of are not drawn independently, then by

(2), (3) and (5)

σ2
Z = (σ2

xy + μ2
xy)χ− μ2

Z

where χ =
2

K1 +K2 − 1

K2−1∑
j=1

j2 +
K2

2 (K1 −K2 + 1)

K1 +K2 − 1

After simplification,

σ2
Z =

K2(3K1K2 −K2
2 + 1)

3(K1 +K2 − 1)
(σ2
xy + μ2

xy)− μ2
Z (8)

III. LINEAR CONVOLUTION OF TWO OR MORE SIGNALS

Let z(N)(n) = x1(n) ∗ x2(n) ∗ · · · ∗ xN (n) where the
superscript (N) in z(N)(n) is used to indicate the convolution
of N signals. Based on this notation, it follows that z(N)(n) =
z(N−1)(n) ∗ xN (n) which means that the observations of
z(N)(n) are given by

z(N)(n) =
∑
r

z(N−1)(r)xN (n−r), for n ∈
[
1,K(N)

]
(9)

with K(v)as the length of the resulting convolution signal
z(v)(n), for v ∈ [2, N ]. It can be shown that

K(v) =
v∑
i=1

Ki − v + 1, (10)

where Ki is the length of the signal xi(n), for i ∈ [i, N ],
and it is assumed that K1 ≥ K2 ≥ ... ≥ KN . In order to use
equations (3), (4) and (5) it is necessary to know the exact
number of product terms in the sum (9) for each and every
observation of z(N)(n). If we let num

[
z(v)(n)

]
be the total

number of product terms for the observation z(v)(n), then in
general

q(N)
n =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 num

[
z(N−1)(i)

]
,

for n ∈ [1,KN − 1]∑KN

i=1 num
[
z(N−1)(i)

]
,

for n ∈ [
KN ,K

(N−1)
]∑n

i=1 num
[
z(N−1)(K(N−1) +KN − i)

]
,

for n ∈ [
K(N−1) + 1, K(N)

]
where q

(N)
n = num[z

(N)
n ] given N ≥ 3, because it has

already been shown that for N = 2,

q(2)n =

⎧⎨⎩n, for n ∈ [1,K2 − 1]
K2, for n ∈ [K2,K1]
K1 +K2 − n, for n ∈ [K2 + 1,K1]

(11)

It follows that,

qNn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 q

(N−1)
i ,

for n ∈ [1,KN − 1],∑KN

i=1 q
(N−1)
i ,

for n ∈ [
KN ,K

(N−1)
]
,∑n

i=1 q
(N−1)

K(N−1)+KN−i,
for n ∈ [

K(N−1) + 1,K(N)
]

(12)
for N ≥ 3. From (12), it is observed that the total number

of product terms in each observation of z(N)(n) on expanding
in equation (9) from z(N−1)(n) → z(N−2)(n) ∗ zN−1(n) →
. . .→ x1(n)∗x2(n)∗ . . .∗xN−1(n) is evaluated in a recursive
manner with the help of (11). Based on this result, then mean
of pj(z(N)) is

μ
Z

(N)
j

= q
(N)
j μX1X2...XN

, (13)

and for observations of Xi drawn independently from
p(xi),∀i ∈ [1, N ], the variance is given by

σ2

Z
(N)
j

= q
(N)
j σ2

X1X2...XN
, (14)

otherwise

σ2

Z
(N)
j

=
[
q
(N)
j

]2
σ2
X1X2...XN

(15)

for j ∈ [1,KN ]. The evaluation of the exact variance of
the product

∏N
i=1Xi, given N ≥ 2, for independent and not

necessarily independent variables is fully covered in [6]. The
density function of the signal z(N)(n) is the mixture model

p(z(N)) =

KN∑
j=1

wjpj(z
(N)) (16)

Using (12), it follows that w1 = w2 = . . . =
wKN−1 = 2

K(N) since the first expression is a rever-
sal of the last expression. That is, the density functions
p1(z

(N)), p2(z
(N)), . . . , pKN−1(z

(N))constitute two observa-
tions each towards the final mixture density given by (16).
The last relative weight is given by wKN

= K(N−1)−KN+1
K(N) .

The mean of z(N)(n) is
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μZ(N) =

∫ ∞

−∞
z(N)p(z(N))dz(N) =

KN∑
j=1

wjμZ(N)
j

Substituting for the relative weights and using (13),

μZ(N) =
μX1X2...XN

K(N)
ζ =

μX1X2...XN

K(N)
� (17)

where ζ = 2

KN−1∑
j=1

q
(N)
j + (K(N−1) −KN + 1)q

(N)
KN

and � = 2q
(N+1)
(KN−1) + (K(N−1) −KN + 1)q

(N)
KN

since
∑KN−1
j=1 q

(N)
j = q

(N+1)
KN−1 based on the recursive defi-

nitions of (12). Using

σZ(N) =

∫ ∞

−∞

(
z(N)

)2

p(z(N))dz(N) − μ2
Z(N)

=

KN∑
j=1

wj

(
σ2

Z
(N)
j

+ μ2

Z
(N)
j

)
− μ2

Z(N)

the variance of z(N)(n) given the observations of xi(n) are
drawn independently from p(xi), ∀i ∈ N , is given by

σ2
Z(N) =

1

K(N)
{σ2

X1X2...XN
ϕ+ μ2

X1X2...XN
ξ} − μ2

Z
(N)
j

(18)

where ϕ = 2qN+1
KN−1 + (KN−1 −KN + 1)q

(N)
KN

and ξ = 2

KN−1∑
j=1

(q
(N)
j )2 + (K(N−1) −KN + 1)(q

(N)
KN

)2

otherwise,

σ2
Z(N) =

(
σ2
X1X2...XN

+ μ2
X1X2...XN

K(N)

)
ψ − μ2

Z
(N)
j

(19)

where ψ = 2

KN−1∑
j=1

(q
(N)
j )2 + (K(N−1) −KN + 1)(q

(N)
KN

)2

and μZ(N) is given by (17).

IV. CIRCULAR CONVOLUTION

With circular convolution, the analysis is somewhat simpler
because the number of product terms is constant for all
observations of the signal z(N)(n). Due to zero padding, it
follows that z(N)(n), for n ∈ [

1,K(N)
]
, has KN product

terms in the sum (where KN is the length of the shortest
variable). That is, all observations are drawn from the same
density function p(z(N)) = pKn

(z(N)). Therefore, the mean
of the signal z(N)(n) is given by

μZ(N) = KN · μX1X2...XN
(20)

If the observations are drawn independently,

σ2
Z(N) = KN · σ2

X1X2...XN
(21)

otherwise,

σ2
Z(N) = K2

N · σ2
X1X2...XN

(22)

V. CONCLUSION

The generalized density functions, and mathematical expres-
sions for the mean and variance of the convolution (linear and
circular) of signals have been derived based on the assumption
that the statistical properties of the individual signals being
processed are a known prior. The variance expressions rely
on the statistical dependence between observations of a given
signal, whereas the mean expression is not. It has been shown
that the linear convolution signal has a mixture density, with
the number of density components equal to the length of the
shortest signal. The circular convolution signal has a relatively
simpler description as observations are characterized by a
single density function.
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