Eigenwave Analysis and Simulation of Disc Loaded Interaction Structure for Wideband Gyro-TWT Amplifier

In the present paper, disc loaded interaction structure for potential application in wideband Gyro-TWT amplifier has been analyzed, taking all the space and modal harmonics into consideration, for the eigenwave solutions. The analysis has been restricted to azimuthally symmetric TE0,n mode. Dispersion characteristics have been plotted by varying the structure parameters and have been validated against HFSS simulation results. The variation of eigenvalue with respect to different structure parameters has also been presented. It has been observed that disc periodicity plays very important role for wideband operation of disc-loaded Gyro-TWT.




References:
[1] B. R. Cheo and A. Rekiouak, "Linear and nonlinear analysis of a
wideband gyro-TWT," IEEE Trans. Electron Dev., ED-36, pp. 802-810,
1989.
[2] B. N. Basu, Electromagnetic Theory and Applications in Beam-Wave
Electronics, Singapore: World Scientific, 1996.
[3] K. R Chu and J. L. Hirshfield, "Comparative study of the axial and
azimuthal bunching mechanism in electromagnetic cyclotron
instabilities," Phys. Fluids, vol. 21, pp. 461-466, 1978.
[4] A. J. Sangster, "Small-signal analysis of the traveling-wave gyrotron
using Pierce parameters," Proc. IEE, Pt. 1, vol. 127, pp. 45-52, 1980.
[5] A. J. Sangster, "Small-signal bandwidth characteristics of a traveling
wave gyrotron amplifier," Int. J. Electron., vol. 51, pp. 583-594, 1981.
[6] S. J. Rao, P. K. Jain and B. N. Basu, "Amplification in gyro traveling
wave tubes - dispersion relation and gain-bandwidth characteristics,"
IETE Tech. (India), vol. 13, pp. 141-150, 1996.
[7] G. S. Park, S. Y. Park, R. H. Kyser, C. M. Armstrong, A. K. Ganguly,
and R. K. Parker, "Broadband operation of a Ka-band tapered gyrotraveling-
wave amplifier," IEEE Trans. Plasma Sci., vol. 22, pp. 536-
543, 1994.
[8] S. Ahn, "Gain and bandwidth of a gyrotron amplifier with tapered
rectangular waveguide," Int. J. Electronics, vol. 53, pp. 673-679, 1982.
[9] M. Agrawal, G. Singh, P. K. Jain, and B. N. Basu, "Analysis of a tapered
vane loaded broad-band gyro-TWT," IEEE Trans. Plasma Sci., vol. 29,
pp. 439-444, 2001.
[10] K. C. Leou, "Theoretical and experimental study of a dielectric-loaded
wide-band gyro-TWT-, Ph. D. thesis, University of California, Los
Angeles, 1994.
[11] J. Y. Choe, H. S. Uhm, and S. Ahn, "Broad-band operation in a
dielectric loaded gyrotron," IEEE Trans. Nuclear Sci., vol. 28, pp. 2918-
2920, 1981.
[12] A. K. Ganguly and S. Ahn, "Large signal theory of two stage wide-band
gyro-TWT," IEEE Trans. Electron. Dev., vol. ED-31, pp. 474-480,
1984.
[13] S. Ahn, "Gain and bandwidth of a gyrotron amplifier with tapered
rectangular waveguide," Int. J. Electronics, vol. 53, pp. 673-679, 1982.
[14] G. S. Park, S. Y. Park, R. H. Kyser, C. M. Armstrong, A. K. Ganguly,
and R. K. Parker, "Broadband operation of a Ka-band tapered gyrotraveling-
wave amplifier," IEEE Trans. Plasma Sci., vol. 22, pp. 536-
543, 1994.
[15] G. S. Park, J. J. Choi, S. Y. Park, C. M. Armstrong, A. K. Ganguly, and
R. H. Kyser, "Gain broadening of two stage tapered gyrotron traveling
wave amplifier," Phys. Rev. Lett., vol. 74, pp. 2399-2402, 1995.
[16] K. R. Chu, Y. Y. Lau, L. R. Barnett, and V. L. Granatstein, "Theory of a
wide-band distributed gyrotron traveling wave amplifier," IEEE Trans.
Electron Dev., vol. ED-28, pp. 866-871, 1981.
[17] J. Y. Choe and H. S. Uhm, "Analysis of the wide band gyrotron
amplifier in a dielectric loaded waveguide," J. Appl. Phys., vol. 52, pp.
4506-4516, 1981.
[18] K. C. Leou, D. B. Mcdermott, and N. C. Luhmann Jr., "Dielectric-loaded
wideband gyro-TWT," IEEE Trans. Plasma Sc., PS-20, pp. 303-305,
1992.
[19] S. J. Rao, P. K. Jain, and B. N. Basu, " Broadbanding of a gyro-TWT by
dielectric loading through dispersion shaping," IEEE Trans. Electron
Dev., ED-43, pp. 2290-2299, 1996.
[20] H. S. Uhm and J. Y. Choe, "Gyrotron amplifier in a helix loaded
waveguide," Phys. Fluids, vol. 26, pp. 3418-3425, 1983.
[21] S. J. Rao, P. K. Jain, and B. N. Basu, "Hybrid-mode helix-loading
effects on gyro-traveling-wave tubes," Int. J. Electron., vol. 82, pp. 663-
675, 1997.
[22] G. G. Denisov, V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov,
"Gyro-TWT with a helical operating waveguide: new possibilities to
enhance efficiency and frequency bandwidth," IEEE Trans. Plasma Sc.,
PS-26, pp. 508-518, 1998.
[23] G. G. Denisov, V. L. Bratman, A. L. Cross, A. D. R. Phelps, K. Ronald,
S. V. Samsonov, and C. G. Whyte, "Gyrotron traveling wave amplifier
with a helical interaction waveguide," Phys. Rev. Lett., vol. 81, pp.
5680-5683, 1998.
[24] J. Y. Choe and H. S. Uhm, "Theory of gyrotron amplifier in disc and
helix loaded waveguides," Int. J. Electron., vol. 53, pp. 729-741, 1982.
[25] E. L. Chu and W. W. Hansen, "The theory of disc-loaded wave guides,"
J. Appl. Phys., vol. 18, pp. 996-1008, 1982.
[26] K. C. Leou, T. Pi, D. B. McDermott, and N. C. Luhmann Jr., "Circuit
design for a wide-band disk-loaded gyro-TWT amplifier," IEEE Trans.
Plasma Sc., PS-26, pp. 488-495, 1998.
[27] Y. Zhang, Y. Mo, and X. Zhou, "Rigorous analysis of the disk-loaded
waveguide slow-wave structures" Int. J. Infrared and Millimeter Waves,
vol. 24, pp. 525-535, 2003.
[28] L. Yue, W. Wang, Y. Gong, and K. Zhang, "Analysis of coaxial ridged
disk-loaded slow-wave structures for relativistic traveling wave tubes,"
IEEE Trans. Plasma Sci., vol. 32, pp. 1086-1092, 2004.
[29] C. W. Baik, S. G Jeon, D. H. Kim, A. K. Sinha, N. Sato, K. Yokoo, and
G. S. Park, "Experimental verification of frequency multiplication in
two-stage tapered gyro-TWT," 30th IEEE Int. Conf. on Plasma Science,
ICOPS 2003, pp. 258, 2003.
[30] W. J. Gallagher, "Periodic structure studies," IEEE Trans. Nuclear Sci.,
vol. NS-32, pp. 2788-2790, 1985.
[31] P. K. Saha and P. J. B. Clarricoats, "Propagation and radiation behaviour
of corrugated coaxial horn feed," Proc. IEE, vol. 118, pp. 1177-1186,
1971.
[32] P. J. B. Clarricoats and P. K. Saha, "Propagation and radiation behaviour
of corrugated feeds Part 1-Corrugated-waveguide feed," Proc. IEE,
vol. 118, pp. 1167-1176, 1971.
[33] R. E. Collin, Foundation for Microwave Engineering, New York:
McGraw-Hill, 1988.
[34] S. G. Mikhin, Variational Methods in Mathematical Physics, New York:
Pergamon, 1964.
[35] H. Hahn, C. I. Goldstein, and W. Bauer, "On the theory of iris-loaded
waveguides," Int. J. Electronics and Comm., AEU, vol. 30, pp. 297-302,
1976.
[36] R. W. Scharstein and A. T. Adams, "Galerkin solution for the thin
circular iris in a TE11-mode circular waveguide," IEEE Trans.
Microwave Theory Tech., vol. 36, pp. 106-113, Jan.1988.
[37] D. Dasgupta and P. K. Saha, "Modal properties of quadruple-ridged
circular waveguide by Galerkin-s method," Indian J. Pure and Appl.
Phys., vol. 22, pp. 106-109, 1984.
[38] S. Amari, J. Bornemann, A. Laisné, and R. Vahldieck, "Design and
analysis of iris-coupled and dielectric-loaded 1/8-cut TE01-mode
microwave bandpass filters," IEEE Trans. Microwave Theory Tech., vol.
49, pp. 413-421, 2001.
[39] S. Amari, R. Vahldieck, and J. Bornemann, "Analysis of propagation in
periodically loaded circular waveguides," IEE Proc. Microw. Antennas
Propag., vol. 146, pp. 50-54, 1999.
[40] D. Wagner, M. Thumm, and W. Kasparek, "Hybrid modes in highly
oversized corrugated rectangular waveguides," Int. J. Infrared and
Millimeter Waves, vol. 20, pp. 567-581, 1999.
[41] H. Hahn, "On the analysis of periodic waveguide discontinuities by
modal field matching," Int. J. Electronics and Comm., AEU, vol. 32, pp.
81-85, 1978.
[42] J. Esteban and J. M. Rebollar, "Characterization of corrugated
waveguides by modal analysis," IEEE Trans. Microwave Theory Tech.,
vol. 39, pp. 937-943, 1991.
[43] J. Y. Choe and H. S. Uhm, "Theory of gyrotron amplifiers in disc or
helix-loaded waveguides," Int. J. Electronics, vol. 53, pp. 729-741,
1982.
[44] A. W. Fliflet, "Linear and non-linear theory of the Doppler-shifted
cyclotron resonance maser based on TE and TM waveguide modes," Int.
J. Electronics, vol. 61, pp. 1049-1080, 1986.