Dynamical Analysis of a Harvesting Model of Phytoplankton-Zooplankton Interaction

In this work, we propose and analyze a model of
Phytoplankton-Zooplankton interaction with harvesting considering
that some species are exploited commercially for food. Criteria for
local stability, instability and global stability are derived and some
threshold harvesting levels are explored to maintain the population
at an appropriate equilibrium level even if the species are exploited
continuously.Further,biological and bionomic equilibria of the system
are obtained and an optimal harvesting policy is also analysed using
the Pantryagin’s Maximum Principle.Finally analytical findings are
also supported by some numerical simulations.





References:
[1] A. M. Edwards and J. Brindley, Oscillatory behaviour in three component
plankton population model., Dyn. Syst., (1996);11(4):347-370.
[2] S. Ruan, Persistence and co-existence in zooplankton-phytoplanktonnutrient
models with instantaneous nutrient recycling., J.Math.
Biol.(1993);31:633-654.
[3] S. Busenberg, K. S. Kishore, P. Austin, G. Wake, The dynamics of a
model of a plankton-nutrient interaction., J. Math. Biol. (1990);52(5):
677-696.
[4] Chakarborty, S. Roy, J. Chattopadhyay, Nutrient-limiting toxin producing
and the dynamics of two phytoplankton in culture media: A mathematical
instantaneous nutrient recycling., J. Ecological Modelling.
(2008);213(2):191-201.
[5] S. Pal, S. Chatterjee, J. Chattopadhyay, Role of toxin and nutrient for the
occurrence and termination of plankton bloom-results drawn from field
observations and a mathematical model., J. Biosystem. (2007);90:87-
100.
[6] R. R. Sarkar, S. Pal, J. Chattopadhyay, Role of two toxin-producing plankton
and their effect on phytoplankton-zooplankton system-a mathematical
study by experimental findings., J. Biosystem. (2005);80:11-23.
[7] J. Chattopadhayay, R. R. Sarkar, S. Mandal, Toxin producing plankton
may act as a biological control for planktonic blooms-field study and
mathematical modelling., J. Biol. Theor. (2002);215(3):333-344.
[8] Y. F. Lv, Y. Z. Pei, S. J. Gao, C. G. Li, Harvesting of a phytoplanktonzooplankton
model., Nonlinear Anal. RWA. (2010);11:3608-3619.
[9] Y. F. Lv, Y. Z. Pei, C. G. Li, Evolutionary consequences of harvesting for
a two-zooplankton one-phytoplankton system., Appl. Math. Modelling
(2012);36:1752-1765.
[10] J. D. Murray, Mathematical Biology., Springer;(2002).
[11] G. Birkhoff, G. S. Rota, Ordinary Differential Equations., Ginn,
Boston; 1882.
[12] J. La Salle, S. Lefschetz, Stability by Liapunov’s Direct Method with
Applications., Academic Press: New York, London: 1961.
[13] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze,
E. F. Mishchenko, The Mathematical Theory of Optimal Processes.,
Pergamon Press: London,1964.
[14] C. W. Clark, Bioeconomic Modelling and Fisheries Management., John
Wiley and Sons; 1985.
[15] T. K. Kar, K. S. Chaudhuri, On non-selective harvesting of a multispecies
fishery., int. J. Math. Educ. Sci. Technol. 33(2002) 543-556.
[16] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of
Renewable Resources., Wiley,New York: 1976.