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Dynamical Analysis of a Harvesting Model of
Phytoplankton-Zooplankton Interaction

Anuj K. Sharma, Amit Sharma, Kulbhushan Agnihotri

Abstract—In this work, we propose and analyze a model of
Phytoplankton-Zooplankton interaction with harvesting considering
that some species are exploited commercially for food. Criteria for
local stability, instability and global stability are derived and some
threshold harvesting levels are explored to maintain the population
at an appropriate equilibrium level even if the species are exploited
continuously.Further,biological and bionomic equilibria of the system
are obtained and an optimal harvesting policy is also analysed using
the Pantryagin’s Maximum Principle.Finally analytical findings are
also supported by some numerical simulations.

Keywords—Phytoplankton-Zooplankton, Global stability, Bio
nomic Equilibrium, Pontrying-Maximum Principal.

I. INTRODUCTION

PLANKTON refer to all the plants and animals in marine
environment that drift with the oceanic currents as inhab

itants of the ocean water.Zooplankton, the planktonic animals,
are all weak swimmers, whereas phytoplankton, planktonic
plants, do not swim at all.They are the staple item for the food
web and are producers and recyclers of most of the energy
that flow through the oceanic ecosystem. The phytoplankton
species in the pelagic zone are excessive small, microscopic
and single-celled, buoyantly supported by the density of the
surrounding water which include: Cyanophyta, Bacillariophyta
and Xanthophyta.Plankton, especially the phytoplankton play
important role not only in aquaculture but they also stabilize
environment by consuming half of the universe carbon dioxide
and releasing huge oxygen for the living organisms. Aquatic
ecologist have long been fascinated by the non-equilibrium
dynamics of explosive phytoplank ton blooms (i.e, the rapid
explosions and declines in their population).Frequent outcome
of a planktonic bloom formation, leads to massive cell lysis
and rapid disintegration of large planktonic population.This
is closely followed by an equally rapid increase in bacterial
number, and in turn, by fast deoxygenation of water, which
could be detrimental to aquatic plants and animals.Plankton
remained fascinated area of the research for the last three
decades but now these days some species are exploited for
the food such as:Nori, Kelp and Eucheuma are phytoplankton
and Jellyfish, Krill and Acetes are zooplankton species.During
recent years, many research models were applied to plankton
system in the presence of nutrients and role of different
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functional forms in phytoplankton-zooplankton interactions
were studied [1-7]. In [4] phytoplankton-zooplankton system
was studied and it was concluded that the toxin producing
phytoplankton may be used as controlling agents for the
termination of plankton blooms. So far, not much attention is
given on the impact of harvesting on the plankton system.To
the best of author’s knowledge, recently Lv et al. [8] were
the first to propose a harvesting model of toxin producing
phytoplankton-zooplankton system in which local and global
stability of the various equilibria were studied and concluded
that over-exploitation of the system lead to the extinction of
the species. Again Lv et al.[9] studied two zooplankton one
phytoplankton model with harvesting.They concluded, in the
absence of harvesting, the type of zooplankton with the higher
biomass conversion ratio and the lower natural death rate
persists only whereas harvesting may lead to the persistence
of the type of zooplankton with the lower biomass conversion
ratio and the higher natural death rate. Following along the
lines of Lv et al.[8], in this paper, we assume both the
populations grows logistically and the interaction of species
are of Holling type-I follows law of mass action[10].Our
paper is organized as follows:In the first section, formation of
model, positivity and boundedness is discussed.Second section
continues with local and global stability analysis of the bound
ary and planner equilibrium, in the next section existence of
bionomic equilibrium and optimal policy is determined by
using pontryagin’s maximal principle.Numerical simulation is
carried out in the final section followed by conclusion.

A. Formation of Model

In this section, phytoplankton-zooplankton interaction is
modeled with the help of system of simultaneous differential
equations with the following assumptions:
(i) The variable P(t) is the density of the phytoplankton
population and Z is the density of zooplankton population
at any instant of time t subject to the non-negative initial
condition P (0) = P0 > 0 and Z(0) = Z0 > 0.
(ii)The parameter r1, r2 are the intrinsic growth rates and K1,
K2 are the environmental carrying capacities of phytoplankton
and zooplankton population respectively.
(iii)The constant ρ1 > 0 is the maximum uptake rate for
zooplankton species, ρ2 > 0 denotes the ratio of biomass
conversion (satisfying the obvious restriction 0 < ρ2 < ρ1).
(iv)μ1, μ2 are the natural death rates of populations and α

denotes the rate of toxic substances produced by per unit
biomass of phytoplankton.
(v) The term αPZ describes the distribution of toxic
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substances which ultimately contributes to the death of
zooplankton populations where ρ2 > α, i.e. the ratio of
biomass consumed by zooplankton is greater than the rate of
toxic substance liberation by phytoplankton species.
(vi)Both populations are subjected to constant harvesting with
harvesting terms c1EP , c2EZ , where c1, c2 are catchability
coefficients and constant E is the harvesting effort.
Thus the phytoplankton-zooplankton interaction with above
assumptions are represented by

dP

dt
= r1P (1−

P

K1
)− (μ1 + c1E)P − ρ1PZ

dZ

dt
= r2Z(1−

Z

K2
)− (μ2 + c2E)Z + (ρ2 − α)PZ

(1)

with the initial conditions P (0) = P0 > 0, Z(0) = Z0 > 0.
1) Positivity and Boundedness of Solution: In this section

we discuss the positivity and boundedness of the system (1)
under the given initial conditions for all t ≥ 0. The system
equations (1) yields

P (t) = P (0) exp
∫ t

0
(r1(1−

P
K1

)− (μ1 + c1E)− ρ1Z)ds
≥ 0 and

Z(t) = Z(0) exp
∫ t

0
(r2(1−

Z
K2

)− (μ2 + c2E) +
(ρ2 − α)P )ds ≥ 0

Further, dP
dt

≤ r1P (1− P
K1

)− c1EP and
dZ
dt

≤ r2Z(1− P
K2

)− c2EZ

By using a standard comparison theorem [11]

lim sup
t→+∞

P (t) ≤ ξ1 and lim sup
t→+∞

Z(t) ≤ ξ2

where ξ1 = Max[P (0), K1(r1−c1E)
r1

] and
ξ2 = Max[Z(0), K2(r2−c2E)

r2
]

Thus all solution curves of the system (1)
with given initial conditions enter the region,
Γ = [(P (t), Z(t))εR2

+ : 0 ≤ P (t) ≤ ξ1, 0 ≤ Z(t) ≤ ξ2].

Remark: In biological context boundedness may be inter
preted as natural restriction to growth of species due to limited
resources.
2) Stability of equilibria: The possible steady states of the

system (1) are
(i) R0=(0, 0), the extinction equilibrium which always exist
(ii) R1=( (r1−μ1−c1E)K1

r1
, 0), zooplankton free equilibrium

exist if E < r1−μ1

c1
,

(iii) R2=(0, (r2−μ2−c2E)K2

r2
), zooplankton dominance

equilibria exist if E < r2−μ2

c2
, and

(iv) The interior equilibrium R∗=(P∗, Z∗)

where P∗ =
r2(r1−μ1−c1E)

ρ1K2
−(r2−μ2−c2E)

(
r1r2

K1K2ρ1
+ρ2−α)

and

Z∗ =
(r1−μ1−c1E−

r1P∗

K1
)

ρ1
exist if r2−μ2

c2
< E <

(r1−μ1−
r1P∗

K
)

c1
.

The dynamical behaviour of the system around various
equilibria is determined by the nature of the eigen values of
community matrix,

J =

⎡
⎢⎢⎣

r1 −
2r1P

∗

K1
− μ1 − ρ1Z

∗ −ρ1P
∗

−c1E

(ρ2 − α)Z∗ r2 −
2r2Z

∗

K2
+

(ρ2 − α)P ∗ − μ2 − c2E

⎤
⎥⎥⎦

At R0, the characteristic equation is

J(R0) =

∣∣∣∣ r1 − μ1 − c1E − λ 0
0 r2 − μ2 − c2E − λ

∣∣∣∣ =

0.

The roots of this equation are λ1 = r1 − μ1 − c1E

and λ2 = r2 − μ2 − c2E.
Thus R0 is a stable node if r1 − μ1 − c1E < 0 and
r2 − μ2 − c2E < 0.
i.e. E > max[ r1−μ1

c1
, r2−μ2

c2
].

Remark: The biological significance of the above theorem
is that, if E crosses a threshold level, the extinction equilibria
R0 becomes stable which further reaffirms the ecologically
well known fact that over exploitation would result in
population extinction.

Proposition 1. For the system (1), R0 = (0, 0) always exist
and when E > max( r1−μ1

c1 , r2−μ2

c2
), it is asymptotically

stable. Further when E < r1−μ1

c1
always hold, R0, R1 exists

and if E <
r1(r2−μ2)−(r1−μ1)K1(ρ2−α)

r1c2−c1K1(ρ2−α) , the zooplankton free
equilibrium R1 becomes locally asymptotically stable.

Proposition 2. For the system (1), if
r1(r2−μ2)−(r1−μ1)K1(ρ2−α)

r1c2−c1K1(ρ2−α) < E < min( r1−μ1

c1
, r2−μ2

c2
),

then R0, R1 and R2 exist, and R0, R1 become unstable, R2

is locally asymptotically stable if E >
r2(r1−μ1)−(r2−μ2)K2ρ1

r2c1−c2K2ρ1
.

Next, if the interior equilibrium R∗ exists, then the charac
teristic equation at R∗ is,

λ2 − traceJλ+ detJ = 0 (2)

where, TraceJ = (r1 − μ1 − c1E)− 2r1P
∗

K1
− ρ1Z

∗ +

(r2 − μ2 − c2E)− 2r2Z
∗

K2
+ (ρ2 − α)P ∗

and DetJ = [(r1 − μ1 − c1E)− 2r1P
∗

K1
− ρ1Z

∗]

[(r2 −μ2 − c2E)− 2r2Z
∗

K2
+(ρ2 −α)P ∗] + ρ1(ρ2 −α)P ∗Z∗ .

Theorem 1. For the system (1), if
r2−μ2

c2
< E < r1−u1

c1
− r1P∗

c1K1
, then R∗ exists and is locally

asymptotically stable if TraceJ < 0 and DetJ > 0.

For the global stability of the equilibria, we have the
following theorem’s.

Theorem 2. The extinction equilibria R0 is globally asymp
totically stable (GAS) if
E > max[

r1 − μ1

c1
,
r2 − μ2

c2
].

Proof: Consider the following Lyapunov function
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V (P,Z) = 1
ρ1
P (t) + 1

ρ2−α
Z(t)

Its time derivative along the solutions of system (1) yields

dV

dt
=

(r1 − μ1 − c1E)P

ρ1
−

r1P
2

ρ1K1

+
(r2 − μ2 − c2E)Z

ρ2 − α
−

r2Z
2

(ρ2 − α)K2

≤
(r1 − μ1 − c1E)P

ρ1
+

(r2 − μ2 − c2E)Z

ρ2 − α

If r1 − μ1 − c1E < 0 and r2 − μ2 − c2E < 0,
then we obtain

dV

dt
< 0.

Further, the Lyapunov theorem on stability [12] implies that
all solutions ultimately approach the equilibrium R0. This
establishes our global result of the equilibrium R0.
Theorem 3. The interior equilibrium R∗ is globally asymp
totically stable (GAS) in the positive quadrant.
Proof of theorem: Let us define a lyapunov function

V (P,Z) =
∫ P

P∗

x− P ∗

x
dx +

ρ1

(ρ2 − α)

∫ Z

Z∗

x− Z∗

x
dx

Then V (P,Z) = 0 if and only if P = P ∗,Z = Z∗ and
V (P,Z) ≥ 0 in pz- plane.
The time derivative of V along the trajectories of system is

dV

dt
=

P − P ∗

P ∗

dP

dt
+

ρ1

(ρ2 − α)

Z − Z∗

Z∗

dZ

dt

= (P − P ∗)[r1 −
r1P

K1
− (μ1 + c1E)− ρ1Z]

+
ρ1

(ρ2 − α)
(Z − Z∗)[r2 −

r2Z

K2
− (μ2 + c2E)

+ (ρ2 − α)P ]

After some algebraic calculations,we can obtain

dV

dt
= −

r1(P − P ∗)2

K1
−

ρ1

(ρ2 − α)

r2(Z − Z∗)2

K2
< 0

Thus
dV

dt
≤ 0 and

dV

dt
= 0 iff P = P ∗ and Z = Z∗.Thus

by lasalle’s theorem [12], R∗ is globally asymptotically stable
(GAS) in some neighbour of pz- plane.

B. Non Existence of Periodic Solutions

Theorem 4. System (1) does not have any limit cycle in
the positive quadrant of pz- plane.
Proof: For the proof of the above theorem, consider a contin
uous and differentiable function D(P,Z) = 1

PZ
in the simple

connected domain Ω of the region Γ in the positive quadrant
of pz plane.

Let H(P,Z) = r1P (1−
P

K1
)− (μ1 + c1E)P

−ρ1PZ

and G(P,Z) = r2Z(1−
Z

K2
)− (μ2 + c2E)Z

+(ρ2 − α)PZ

Then

Δ(P (t), Z(t)) =
∂(DH)

∂P
+

∂(DG)

∂Z

= −
r1

K1Z
−

r2

K2P
< 0

, which is negative. Thus Δ(P (t), Z(t)) neither change sign
nor identically zero in the positive quadrant of pz-plane.
Therefore Bendixon-Dulac criteria confirm the non-existence
of any limit cycles or closed trajectory in the positive quadrant
of pz-plane.

C. Bionomic Equilibrium

The bionomic equilibrium is said to be achieved when
the total revenue obtained by selling the harvested biomass
equals the total cost of harvesting it. Let C be the harvesting
cost per unit effort; p1,p2 are the prices per unit biomass of
the phytoplankton and zooplankton respectively. Then net
economic revenue or economic rent at any time t is given by,
π(P,Z,E, t) = (p1c1P + p2c2Z − C)E
The Bionomic equilibrium (P∞, Z∞, E∞), of the
phytoplankton-zooplankton system is the solution of the
biological equilibrium given by dP

dt
= 0, dZ

dt
= 0, which

yields

E =
r1

c1
[(1−

P

K1
)− μ1 − ρ1Z]

=
r2

c2
[(1−

Z

K2
) + (ρ2 − α)P − μ2] (3)

or

(
r1

K1
+

c1(ρ2 − α)

c2
)P + (ρ1 −

c1r2

c2K2
)Z

+(
c1(r2 − μ2)

c2
− (r2 − μ1)) = 0. (4)

and the economic equilibrium which is said to be achieved
when the economic rent is completely dissipated, i.e.

π(P,Z,E, t) = (p1c1P + p2c2Z − C)E = 0. (5)

On solving (4) , (5) and using (3), we can find the bionomic
equilibrium

P∞ =

(r1 − μ1)c2 − c1(r2 − μ2) +
C(c1r2 − ρ1c2K2)

c22p2K2

r1c2

K1
+ c1(ρ2 − α) +

c1p1(c1r2 − ρ1c2K2)

c2p2K2

,

which is positive if
c1

c2
< min(

r1 − μ1

r2 − μ2
,
ρ1K2

r2
),

Z∞ =
C − c1p1P∞

c2p2
exist if P∞ <

C

c1p1
and E∞ = r1

c1
[(1− P∞

K1
)− μ1 − ρ1Z∞] exist if

P∞ <
K1

r1
(r1 − μ1 − ρ1Z∞).
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D. Optimal Harvesting Policy

In this section, the aim is to find an optimal harvesting pol
icy for maximum sustainable yield by; assurance to regulatory
agency to achieve its objective. We consider the present value
� of a continuous time-stream of revenues given by :

� =
∫
∞

0 e−δt(p1c1P (t) + p2c2Z(t)− C)E(t)dt

where δ is the instantaneous rate of annual discount. Thus,our
objective is to maximize � subject to (1) and to the control
constraints 0 ≤ E ≤ Emax ,here Emax is the upper limit for
the harvesting effort.
By using the Pontryagin Maximum Principle [13], the
associated hamiltonian function is given by:

H = e−δt(p1c1P + p2c2Z − C)E + λ1(r1P (1−
P

K1
)

− (μ1 + c1E)P − ρ1PZ) + λ2(r2Z(1−
Z

K2
)

− (μ2 + c2E)Z + (ρ2 − α)PZ)

= σ(t)E + λ1(r1P (1−
P

K1
)− μ1P − ρ1PZ)

+ λ2(r2Z(1−
Z

K2
)− μ2Z + ρ2PZ − αPZ)

where λ1, λ2 are the adjoint operators which satisfy the
equations

dλ1

dt
= −

∂H

∂P
, (6)

dλ2

dt
= −

∂H

∂Z
, (7)

and σ(t) = (e−δt(p1c1P +p2c2Z−C)−λ1c1P −λ2c2Z)E
represents the switching function [15]. Since the Hamiltonian
H is linear in control variable E(t) so in this case only
singular control for optimisation problem will be obtained.
Thus the necessary condition to maximize the hamiltonian H
under the singular control variable E(t) is

∂H

∂E
= 0 (8)

So (8) gives:

e−δt(p1c1P + p2c2Z − C)− λ1c1P − λ2c2Z) = 0. (9)

or it can be written as, (λ1c1P + λ2c2Z) = e−δt ∂π
∂E
, which

implies that the total user’s cost of harvesting per unit effort is
equal to the discounted values of the future price at the steady
state effort level.
Now from (6) and (7), we have

dλ1

dt
= −c1p1Ee−δt − λ1(r1 −

2r1P

K1
− (μ1 + c1E)

−ρ1Z)− (ρ2 − α)Zλ2 (10)

dλ2

dt
= −c2p2Ee−δt + ρ1Pλ1 − λ2(r2 −

2r2Z

K2

− (μ2 + c2E) + (ρ2 − α)P ) (11)

Now in order to find the optimal equilibrium we consider the
equilibrium value of E from (3) at R∗ as

E =
r1

c1
[(1−

P ∗

K1
)−μ1−ρ1Z

∗] =
r2

c2
[(1−

Z∗

K2
)−μ2+(ρ2−α)P ∗]

(12)
and using it in (10) and (11), the following system of simul-
taneous linear equations can be obtained,

dλ1

dt
= −c1p1Ee−δt +

r1P
∗λ1

K1
− (ρ2 − α)Z∗λ2(13)

dλ2

dt
= −c2p2Ee−δt + ρ1P

∗λ1 +
r2Z

∗λ2

K2
(14)

Eliminating λ2 from (13) and (14), we have

dλ1

dt
−M1λ1 = −M2e

−δt, (15)

where, M1 = (
r1

K1
+

(ρ2 − α)c1
c2

)P ∗ and

M2 = c1p1E +
(ρ2 − α)

c2
(c1p1P

∗ + c2p2Z
∗ − C)

On solving (15), we get λ1 =
M2

M1 + δ
e−δt and using

this value in (14), we obtain

dλ2

dt
−N1λ1 = −N2e

−δt (16)

which results into λ2 =
N2

N1 + δ
e−δt

where N1 =
r2Z

∗

K2
and N2 = c2p2E − ρ1

M2

M1 + δ
P ∗

Here λie
δt represents shadow prices [16] along the singular

path and from the solution of (15) and (16), it is clear
that shadow prices remains constant over time interval in
optimal equilibrium when they strictly satisfy the transversality
condition at ∞ [14-15]. It implies they remain bounded as
t → ∞. Using the values of λ1 and λ2 in (9), the equation of
the path of singular control is:

c1(p1 −
M2

M1 + δ
)P + c2(p2 −

N2

N1 + δ
)Z = C (17)

Considering the values of M1,M2, N1 and N2 at
the equilibrium value of E; (5) and (17) gives the
optimal equilibrium of the population of phytoplankton
and zooplankton i.e.(Pδ, Zδ). Moreover from (3), the
corresponding optimal harvesting effort Eδ can be estimated.
Now from (17), it can be concluded that

π(P,Z,E) = c1p1P + c2p2Z − C

= (
c1M2

M1 + δ
)P + (

c2N2

N1 + δ
)Z → 0

as δ → ∞ (18)

Therefore, the net economic revenue π(P∞, Z∞, E, t)=0.
This implies that in case of infinite discount rate, the net
economic revenue becomes zero and harvesting will no longer
take place [16].Moreover (18) shows that, the net economic
rent only be maximised in the optimal equilibrium if zero
discount rate being offered.
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Fig. 1. Stability of the interior equilibrium R∗
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Fig. 2. Stability of the interior equilibrium R∗

Again equation (18) shows that, c1M2(N1+δ)P+c2N2(M1+
δ) is of O(δ) and (M1 + δ)(N1 + δ)Z of O(δ2) , thus π is
of O(δ−1) and this implies, π (the economic rent function)
is a decreasing function of the instantaneous annual rate of
discount δ. Hence, δ = 0 leads to maximization of π.

E. Numerical Simulation

(i) Consider the following set of parametric values of the
given system ,
r1 = 6, r2 = 0.1, K1 = 50, K2 = 30, ρ1 = 0.3, ρ2 = 0.25,
α = 0.04, μ1 = 0.05, μ2 = 0.08, c1 = 0.22, c2 = 0.1,
E = 0.5.
It is easy to find
r1−u1

c1
= 27.0455, r2−u2

c2
= 0.2, r1−u1

c1
− r1P∗

c1K1
= 26.8005,

TraceJ = −0.1182 < 0 and DetJ = 0.5490 > 0.
So, the condition of Theorem 1 holds, then the interior equi
librium R∗ = (0.4490, 19.2871) is globally asymptotically
stable, which is shown in fig. 1. In the absence of harvesting
effort (E=0), the globally asymptotically stable equilibrium R∗

exists at (0.2184, 19.7419) (see fig. 2).
(ii)Choosing E = 30, keeping the other parametric values as
in (i)
It is easy to verify that E > max( r1−u1

c1
, r2−u2

c2
) =

max(27.0455, 0.2) = 27.0455.
Then the conditions of Theorem 2 are satisfied. Hence the
extinction equilibrium R0 is globally asymptotically stable,
which is shown in fig. 3.
(iii) Taking the same set of parametric values in (i) with

p1 = 2, p2 = 3, C = 5.9, δ = 0.03 and
E = r1

c1
[(1 − P∗

K1
) − μ1 − ρ1Z

∗] instead taking E = 0.5
or 1, we obtain the bionomic equilibrium is (P∞, Z∞) =
(0.9834, 18.2243) and effort value to reach this equilibrium is
E∞ = 1.6577.The optimal equilibrium solution is (Pδ, Zδ) =
(0.5137, 18.9132) and the effort value to reach this equilibrium
is Eδ = 0.9745.

−1 0 1 2 3 4 5−5

0

5

10

P

Z

E=30

R0

Fig. 3. Stability of the extinction equilibrium R0

II. CONCLUSION

In this paper, a mathematical model of phytoplankton zoo
plankton interactions with harvesting (i.e some species are
exploited commercially for food supply) is analysed. It is
assumed that, both populations grow logistically and some
species of phytoplankton releases toxic substances which
reduces the predator’s grazing pressure on their prey (phyto
plankton) species. Using stability theory of ordinary diffe
rential equations the dynamical properties (local and global)
of the system along with the effects of harvesting efforts
are discussed. It is shown, in case of excessive harvest
ing the system never recovered and entire populations goes
to extinction. Further, it has been proved that the interior
equilibrium exists under certain conditions and it is globally
asymptotically stable. Moreover, numerical results shows that,
in the absence of harvesting (E=0) interior equilibrium exists
at lower population level R∗ = (0.0575, 19.8102) compared
to R∗ = (0.2815, 19.3555) (in the presence of harvesting)
for the phytoplankton but at a higher population level for
the zooplankton. It has also been shown that the system
under consideration does not have any limit cycle by using
dulac’s criterion. Next, the existence of bionomic equilibria
(intersection of the zero profit line and the biological equi
librium) and optimal harvesting policy are discussed. The
present value of revenues is maximized by using Pontryagin’s
maximum principle subject to the state equations and the
control constraints. It is found that the shadow prices remain
constant over time in optimal equilibrium when they satisfy
the transversality condition. It is established that the zero
discounting leads to the maximization of economic revenue
and that an infinite discount rate leads to complete dissipation
of economic rent.
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