Decreasing of Displacements of Prestressed Cable Truss

Suspended cable structures are most preferable for large spans covering due to rational use of structural materials, but the problem of suspended cable structures is initial shape change under the action of non-symmetrical load. The problem can be solved by increasing of relation of dead weight and imposed load, but this methods cause increasing of materials consumption.Prestressed cable truss usage is another way how the problem of shape change under the action of non-symmetrical load can be fixed. The better results can be achieved if we replace top chord with cable truss with cross web. Rational structure of the cable truss for prestressed cable truss top chord was developed using optimization realized in FEM program ANSYS 12 environment. Single cable and cable truss model work was discovered.Analytical and model testing results indicate, that usage of cable truss with the cross web as a top chord of prestressed cable truss instead of single cable allows to reduce total displacements by 13-16% in the case of non-symmetrical load. In case of uniformly distributed load single cable is preferable.





References:
[1] European Committee for Standardization, Eurocode 1: Actions on
structures - Part 2: Traffic loads on bridges, Brussels, 2004
[2] European Committee for Standardization, Eurocode 3 : Design of steel
structures - Part 1.11: Design of structures with tensile components,
Brussels, 2003.
[3] Feyrer K., Wire Ropes. Berlin: Springer-Verlag Berlin Heidelberg, 2007.
[4] Fletcher R., Practical methods of optimization, 2nd edition, London: John
Willey &Sons Inc., 2000.
[5] Gogol M., "Shaping of Effective Steel Structures," in Scientific
proceedings of Rzeszow Technical University, Rzeszow: Rzeszow
Technical University, 2009. [Nr. 264], pp. 43-56.
[6] Goremikins V., Rocens K., Serdjuks D., "Rational Structure of Cable
Truss," in World Academy of Science, Engineering and Technology.
Special Journal Issues, Issue 0076: 2011, pp. 571-578.
[7] Goremikins V., Serdjuks D., "Rational Structure of Trussed Beam," in
Proc. The 10th International Conference "Modern Building Materials,
Structures and Techniques", Vilnius: Vilnius Gediminas Technical
University, 2010, pp. 613-618.
[8] Goremikins V., Rocens K., Serdjuks D., "Rational Structure of
Composite Trussed Beam," in Proc. The 16th International Conference
"Mechanics of composite materials, Riga: Institute of Polymer
Mechanics, 2010, p. 75.
[9] Goremikins V., Rocens K., Serdjuks D., "Evaluation of Rational
Parameters of Trussed Beam," in Scientific Journal of RTU. 2. series.,
Construction Science, 11. vol., 2010, pp. 21-25.
[10] Goremikins V., Rocens K., Serdjuks D. "Rational Large Span Structure
of Composite Pultrusion Trussed Beam," in Scientific Journal of RTU. 2.
series., Construction Science., 11. vol., 2010, pp. 26-31.
[11] Hambly E.C. Bridge Deck Behaviour. Second edition, New York: E &
FN Spon, 1998.
[12] Montgomery D.C. Design and analysis of experiments, 5th edition, New
York: John Willey &Sons Inc., 2001.
[13] Serdjuks, D.; Rocens, K., "Decrease the Displacements of a Composite
Saddle-Shaped Cable Roof," Mech. Compos. Materials, Vol. 40, No5.,
2004.
[14] Shen, Z.Y.; Li, G.Q.; Zhang, Q.L., "Advances in steel structures," in
Proc. Fourth International Conference, Shanghai, China, 2005.
[15] Strasky J. Stress Ribbon and Cable Supported Pedestrian Bridge,
London: Thomas Telford Publishing, 2005.
[16] Tibert G. Numerical Analyses of Cable Roof Structures. Stockholm:
KTH, TS-Hogskoletryckeriet, 1999.
[17] Wai-Fah Chen, Eric M. Lui, Handbook of structural engineering, New
York, 2005.
[18] Walther R., Houriet B., Isler W., Moia P., Klein J.F. Cable Stayed
Bridges. Second edition. London: Thomas Telford, 1999.
[19] Барабаш М, Лазнюк М., Мартынова, М., Пресняков, Н.,
Современные технологии расчета и проектирования
металлических и деревянных конструкций. (Modern Designing and
Calculation Techniques of Steel and Timber Structures), Москва:
Издательство Асоции строительных вузов, 2008.
[20] Басов К., ANSYS:Справочник пользователя. (ANSYS: User Manual),
Москва: ДМК Пресс, 2005.
[21] Бахтин С., Овчинников И., Инамов Р., Висячие и вантовые мосты
(Suspension and Cable Bridges), Саратов: Сарат. гос. техн. ун-т, 1999.
[22] Беленя Е., Стальные конструкции: Спецкурс (Steel Structures:
Special Course), Москва: Стройиздат, 1991.
[23] Ведеников Г., Металлические конструкции: Общий курс(Steel
Structures: General Course), Москва: Стройиздат, 1998.
[24] Городецкий А., Евзоров И., 2005. Компьютерные модели
конструкций (Structures computer models), Киев: Факт, 2005.
[25] Ермолов В., Инженерные конструкции (Engineering Structures),
Москва: Высшая школа, 1991.
[26] Кирсанов М. Висячие системы повышенной жесткости
(Suspension Structures with Increased Stiffness), Москва: Стройиздат,
1983.
[27] Михайлов В., Предварительно напряженные комбинированные и
вантовые конструкции (Prestressed Combined and Cable Structures),
Москва: ACB, 2002.
[28] Петропавловский А., Вантовые мосты (Cable Bridges), Москва:
Транспорт, 1985.
[29] Смирнов В., Висячие мосты больших пролетов (Large Span
Suspension Bridges), Москва: Высшая школа, 1970.
[30] Трущев А., Пространственные металлические конструкции
(Spatious Steel Structures), Москва: Стройиздат. 1983.
[31] http://en.wikipedia.org/wiki/Bubble_sort