CuO Thin Films Deposition by Spray Pyrolysis: Influence of Precursor Solution Properties

CuO thin films were deposited by spray ultrasonic pyrolysis with different precursor solution. Two staring solution slats were used namely: copper acetate and copper chloride. The influence of these solutions on CuO thin films proprieties of is instigated. The X rays diffraction (XDR) analysis indicated that the films deposed with copper acetate are amorphous however the films elaborated with copper chloride have monoclinic structure. UV- Visible transmission spectra showed a strong absorbance of the deposited CuO thin films in the visible region. Electrical characterization has shown that CuO thin films prepared with copper acetate have a higher electrical conductivity.




References:
[1] F. Marabelli, G. B. Parravicini, F. Salghetti-Drioli, Phys. Rev. B52
(1995) 1433–1436.
[2] A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, P. K.
Patanjali, Appl. Phys. Lett. 84 (2004) 1180–1182.
[3] K. Han, M. Tao, Sol. Energy Mater. Sol. Cells 93 (2009) 153.
[4] X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, D. Y.
Song, J. Phys. Chem. B 108 (2004) 5547–5551.
[5] R. V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12 (2000) 2301–
2305.
[6] A. Y. Oral, E. Mensur, M. H. Aslan, E. Basaran,MaterChemPhys, 83(1),
140 (2004).
[7] E. R. Kari, K. S. Brown, Choi, Electrochemical synthesis and
characterization of transparent nanocrystalline Cu2O films and their
conversion to CuO films, Chem. Commun. (2006) 3311–3313.
[8] T. Maruyama, Copper oxide thin films prepared from copper
dipivaloylmethanate and oxygen by chemical vapor deposition, Jpn. J.
Appl. Phys. 37(1998) 4099–4102.
[9] J. H. Benjamin, K. Nikolai, L. Ganhua, L. I. - Khan, C. Junhong, Z. Xin,
Transport, analyte detection and optoelectronic response of p-type CuO
nanowires, J. Phys. Chem. C 114 (2010) 2440–2447.
[10] V. F. Drobny, D. L. Pulfrey, Properties of reactively-sputtered copper
oxide thinfilms, Thin Soild Films 61 (1979) 89–98.
[11] D. Gopalakrishna, K. Vijayalakshmi, C. Ravidhas Effect of pyrolytic
temperature on the properties of nano-structured Cuo optimized for
ethanol sensing applications, J Mater Sci: Mater Electron (2012).
[12] V. Dhanasekaran, T. Mahalingam, Physical properties evaluation of
various substrates coated cupric oxide thinfilms by dip method, Journal
of Alloys and Compounds 539 (2012) 50–56.
[13] S. Kose, E. Ketenci, V. Bilgin, F. Atay, I. Akyuz, Some physical
properties of In doped copper oxide films produced by ultrasonicspray
pyrolysis, Current Applied Physics 12 (2012) 890-895.
[14] D. P. Volanti, D. Keyson, L.S. Cavalcante, A.Z. Sim~oes, M.R. Joya, E.
Longo, J. A. Varela, P. S. Pizani, A. G. Souza, J. Alloys Compd. 459
(2008) 537.
[15] H. Fan, B. Zou, Y. Liu, S. Xie, Nanotechnology 17 (2006) 1099.
[16] T. Yu, C.-H. Sow, A. Gantimahapatruni, F.-C. Cheong, Y. Zhu, K.-C.
Chin, X. Xu, C.-T. Lim, Z. Shen, J.T.-L. Thong, A.T.-S. Wee,
Nanotechnology 16 (2005) 1238.
[17] J. J. Tauc, Amorphous and Liquid Semiconductors, Plenum, London,
1974.
[18] L. Chabane, N. Zebbar, M. Lamri Zeggar, M. S. Aida, M. Kechouane a,
M. Trari, Effects of CuO film thickness on electrical properties of
CuO/ZnO and CuO/ZnS hetero-junctions Materials Science in
Semiconductor Processing 40 (2015) 840–847.
[19] F. Urbach, Phys. Rev. 92 (1953) 1324.