An Improved Model for Prediction of the Effective Thermal Conductivity of Nanofluids

Thermal conductivity is an important characteristic of a nanofluid in laminar flow heat transfer. This paper presents an improved model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions and particle size. The proposed model includes a parameter which accounts for the interfacial shell, brownian motion, and aggregation of particle. The validation of the model is verified by applying the results obtained by the experiments of Tio2-water and Al2o3-water nanofluids.




References:
[1] J. C. Maxwell, "A Treatise on Electricity and Magnetism, 2nd Ed.,
Oxford Univ. Press, Cambridge, UK 1904, p. 435.
[2] B. Wang, L. Zhou, and X. Peng, "A Fractal Model for Predicting the
Effective Thermal Conductivity of Liquid with Suspension of
Nanoparticles," Int. J. Heat Mass Tran., 46(14), , 2003, pp. 2665-2672.
[3] P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman,
"Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles
(Nanofluids),", Int. J. Heat Mass Tran., 45(4), 2002, pp. 855-863.
[4] C.H. Chon, K.D. Kihm, S.P. Lee, and S.U.S. Choi, "Empirical
Correlation Finding the Role of Temperature and Particle Size for
Nanofluid (Al2O3) Thermal Conductivity Enhancement", Appl. Phys.,
2005.
[5] H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, NetsuBussei
(Japan) 7, 227, 1993.
[6] H. Xie, M. Fujii, , and X. Zhang, "Effect of Interfacial Nanolayer on the
Effective Thermal Conductivity of Nanoparticle-Fluid Mixture", Int. J.
Heat Mass Tran., 48(14), 2005, pp. 2926-2932.
[7] W. Yu, and S. U. S. Choi, "The Role of Interfacial Layers in the
Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell
Model", J. Nanopart. Res., 5(1), 2003 pp. 167-171.
[8] B. Wang, L. Zhou, and X. Peng, "A Fractal Model for Predicting the
Effective Thermal Conductivity of Liquid with Suspension of
Nanoparticles", Int. J. Heat Mass Tran., 46(14), 2003, pp. 2665-2672.
[9] J.Koo and C. Kleinstreuer, "A New Thermal Conductivity Model for
Nanofluids", J. Nanopart. Res., 6(6), 2004, pp. 577-588.
[10] J. Xu, B. Yu, M. Zou, and P. Xu, "A New Model for Heat Conduction
of Nanofluids Based on Fractal Distributions of Nanoparticles", J. Phys.
D: Appl. Phys., 39(20), 2006, pp. 4486-4490.
[11] Y. Xuan Q. Li, and W. Hu, "Aggregation Structure and Thermal
Conductivity of Nanofluids" AIChE Journal, 49(4), 2003, pp. 1038-
1043.
[12] b-X. Wang, W.-Y. Sheng, and . X.-F. Peng, "A Novel Statistical
Clustering Model for Predicting Thermal Conductivity of Nanofluid",
Int. Thermophys, 30, 2009, pp. 1992-1998.
[13] H. Hezaveh1, M. Keshavarz Moraveji, "Modeling Effective Thermal
Conductivity of Al2o3 Nanoparticles in Water and Ethylene Glycol
Based on Shape Factor", Int. J. of Chem. Eng. and Appl., Vol. 2, No. 1,
2011, ISSN: 2010-0221
[14] X. Zhang, H. Gu, and M. Fujii, Int. J. Thermophys. 27, 2006, p 569.
[15] X. Wang, X. Xu, and S. U. S Choi, ÔÇÿÔÇÿThermal Conductivity
ofNanoparticle-Fluid Mixture-- J. Thermophys. Heat Transfer, 13(4),
1999, pp. 474-480
[16] Y. Xuan and Q. Li, "Heat Transfer Enhancement of Nanofluids", Int.J.
Heat Fluid Flow, 1(21), 2000, pp. 58-64.
[17] A. Turgut, I. Tavman, M. Chirtoc, H.P. Schuchmann, C. Sauter, and S.
Tavman, "Thermal Conductivity and Viscosity Measurements of Water-
Based TiO2 Nanofluids"
[18] S.M.S. Murshed, K.C. Leong, and C. Yang, Int. J. Therm. Sci. 44,,
2005, p 367.
[19] D.-W. Oh, A. Jain, J.K.E.Goodson, and J.S. Lee, " Thermal
Conductivity Measurement and Sedimeentation detection of Al2O3
Nanofluids by Using the 3W Method", Int. J. Heat Fluid Flow, 29, 2008,
p 1456.
[20] B.S.A. Shin, "Minimum Quantity Lubrication (MQL) Grinding Using
Nanofluid", The University of Mishigan, http://wumrf.engin.umich.edu/
resdarch/file/advmach_files/mqlm
[21] A. R. Moghadassi, S.M. Hosseini, D. Henneke, and A. Elkamel, "A
Model of Nanofluids Effective Thermal Conductivity Based on
Dimensionless Groups", J. of Thermal Analysis and Calorimetry, Vol.
96, 2009, pp 81-84.