A Fast, Portable Computational Framework for Aerodynamic Simulations

We develop a fast, user-friendly implementation of
a potential flow solver based on the unsteady vortex lattice
method (UVLM). The computational framework uses the Python
programming language which has easy integration with the scripts
requiring computationally-expensive operations written in Fortran.
The mixed-language approach enables high performance in terms
of solution time and high flexibility in terms of easiness of code
adaptation to different system configurations and applications. This
computational tool is intended to predict the unsteady aerodynamic
behavior of multiple moving bodies (e.g., flapping wings, rotating
blades, suspension bridges...) subject to an incoming air. We
simulate different aerodynamic problems to validate and illustrate
the usefulness and effectiveness of the developed computational tool.




References:
[1] R. E. Perez, P. W. Jansen, J. R. R. A. Martins, pyOpt: a python-based
object-oriented framework for nonlinear constrained optimization,
Structural and Multidisciplinary Optimization 45 (1) (2012) 101 – 118.
[2] J. J. Alonso, P. LeGresley, E. van der Weide, J. R. R. A. Martins,
J. J. Reuther, pymdo: A framework for high-fidelity multi-disciplinary
optimization, in: 10th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, AIAA 20044480, 2004.
[3] Y.-Y. Chen, D. L. Bilyeu, L. Yang, S.-T. J. Yu, Solvcon: A python-based
cfd software framework for hybrid parallelization, in: 49th AIAA
Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, AIAA 2011-1065, 2011.
[4] L. Dalcin, N. Collier, P. Vignal, A. M. A. Cortes, V. M. Calo, Petiga:
A framework for high-performance isogeometric analysis, Computer
Methods in Applied Mechanics and Engineering 308 (2016) 151–181.
[5] M. Ghommem, M. R. Hajj, D. T. Mook, B. K. Stanford, P. S. Beran,
L. T. Watson, Global optimization of actively-morphing flapping wings,
Journal of Fluids and Structures 30 (2012) 210–228.
[6] B. K. Stanford, P. S. Beran, Analytical sensitivity analysis of an unsteady
vortex-lattice method for flapping-wing optimization, Journal of Aircraft
47 (2010) 647–662.
[7] A. T. Nguyen, J.-K. Kim, J.-S. Han, J.-H. Han, Extended unsteady
vortex-lattice method for insect flapping wings, Journal of Aircraft 0
(2016) 1–10.
[8] J. D. Colmenares, O. D. Lpez, S. Preidikman, Computational study of
a transverse rotor aircraft in hover using the unsteady vortex lattice
method, Mathematical Problems in Engineering 2015, article ID 478457.
[9] A. Rosenberg, A. Sharma, A prescribed-wake vortex lattice method for
preliminary design of co-axial, dual-rotor wind turbines, Journal of Solar
Energy Engineering 138 (2016) 1–9.
[10] B. F. Ng, H. Hesse, R. Palacios, J. M. R. Graham, E. C. Kerrigan,
Aeroservoelastic state-space vortex lattice modeling and load alleviation
of wind turbine blades, Wind Energy 18 (2015) 1317–1331.
[11] G. Tescione, C. S. Ferreira, G. van Bussel, Analysis of a free vortex
wake model for the study of the rotor and near wake flow of a vertical
axis wind turbine, Renewable Energy 87 (2016) 552–563.
[12] M. Jeona, S. Leea, S. Leeb, Unsteady aerodynamics of offshore floating
wind turbines in platform pitching motion using vortex lattice method,
Renewable Energy 65 (2014) 207–212.
[13] M. F. Neef, D. Hummel, Euler Solutions for a Finite-Span Flapping
Wing in Mueller T. J. (ed.), Fixed and Flapping Wing Aerodynamics
for Micro Air Vehicle Applications, American Institute of Aeronautics
and Astronautics, Inc., Reston, 2004.
[14] M. Ghommem, V. Calo, Flapping wings in line formation flight: a
computational analysis, The Aeronautical Journal 118 (2014) 485–501.
[15] J. Katz, A. Plotkin, Low-Speed Aerodynamics, Cambridge University
Press, MA, 2001.