
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:5, 2018

517

A Fast, Portable Computational Framework for
Aerodynamic Simulations

Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo

Abstract—We develop a fast, user-friendly implementation of
a potential flow solver based on the unsteady vortex lattice
method (UVLM). The computational framework uses the Python
programming language which has easy integration with the scripts
requiring computationally-expensive operations written in Fortran.
The mixed-language approach enables high performance in terms
of solution time and high flexibility in terms of easiness of code
adaptation to different system configurations and applications. This
computational tool is intended to predict the unsteady aerodynamic
behavior of multiple moving bodies (e.g., flapping wings, rotating
blades, suspension bridges...) subject to an incoming air. We
simulate different aerodynamic problems to validate and illustrate
the usefulness and effectiveness of the developed computational tool.

Keywords—Unsteady aerodynamics, numerical simulations,
mixed-language approach, potential flow.

I. INTRODUCTION

THE performance of aerodynamic systems, such as

air vehicles, suspension structures, and wind turbines,

could be assessed at the earliest stages of design

through the deployment of computational tools. Recent

advances in computer hardware and software have overcome

the computational burden associated with the numerical

integration of the equations governing the aerodynamic

performance of the aforementioned systems. However, large

scale and intensive computations still require the use of

compiled languages (e.g., C/C++, Fortran) to obtain reasonable

simulation times. Integrating the set of flow governing

equations into a single large code (for instance, completely

written in Fortran) may be complex for users and scientists

and would lack flexibility and easiness in adapting different

configurations and applications. The demanded flexibility

can be hardly achieved by deploying such high-performance

programming language. Python presents a convenient and open

source working environment but remains inappropriate for

intensive computation. As such, the mixed-language approach

seeks to resolve the issues related to both performance and

flexibility. The concept of a computational platform supporting

data exchange between scripts programmed in different

languages has been previously employed for multi-disciplinary

optimization (e.g., pyOPT [1], and pyMDO [2]), high-fidelity

simulations of nonlinear hyperbolic PDEs (e.g., SOLVCON

[3]), and isogeometric analysis (e.g., PetIGA [4]).

In this paper, we present a fast and efficient numerical

implementation of a potential flow solver based on the

unsteady vortex lattice method (UVLM). This computational

tool is designed to simulate the unsteady aerodynamic

Mehdi Ghommem is with the American University of Sharjah, United Arab
Emirates (e-mail: mghommem@aus.edu).

behavior of a wide range of moving bodies. The aerodynamic

loads are obtained by pressure differences across the body

surface resulting from acceleration- and circulation-based

phenomena. The UVLM formulation accounts for unsteady

effects such as added mass forces, the growth of bound

circulation, and the wake. The UVLM has been widely used

for the analysis and design of avian-like flapping wings in

forward and hover flights [5]-[8], modeling of wind turbines

[9]-[11], and dynamic analysis of offshore structures [12].

The goal of the computational tool is to provide a friendly

framework for aerodynamic simulations based on UVLM.

We achieve this by using a mixed-language programming

paradigm. We employ Python for high-level management of

grid objects and processing the aerodynamic quantities while

Fortran is used for the computationally-demanding kernels.

II. AERODYNAMICS SIMULATOR DESCRIPTION

The unsteady vortex lattice method (UVLM) facilitates the

study of the aerodynamic effects in slender bodies. Vorticity

is the main fluid quantity used in UVLM to compute the

dynamic evolution of fluids. The vorticity is generated along

the boundary layer as a consequence of the viscous forces

and advected downstream into the fluid. The region of the

fluid enclosing the vorticity is called wake. In UVLM, the

regions confining the vorticity are considered thin enough to

be described as sheets of vorticity. This consideration agrees

with the exclusion of viscous effects due to the assumed ideal

potential flow. The vortex sheet description for the case of a

lifting body submerged in a fluid is illustrated in Fig. 1. The

vortex sheet description consists of a bound vortex and a free

vortex. The bound vortex sheet describes the boundary layer

of the lifting body. The displacement of the bound vortex is

prescribed as a result of the solid surface of the body and a

jump in the pressure may exist across this segment of the sheet.

The free vortex sheet describes the wake and has no prescribed

displacement implying that the sheet deforms freely. In the free

vortex, there is no jump in pressure due to the free deformation

of the wake. The only flow separation considered in the vortex

sheet description is performed at the trailing edge connecting

the bound vortex and the free vortex, implying the Kutta

condition is satisfied in UVLM. The implementation of UVLM

is based on discretizing the vortex sheets in a lattice of vortex

elements known as vortex rings. The generated aerodynamics

loads (lift and induced drag) are computed from the vortex

rings’ circulations obtained by imposing the no-penetration

condition along the body surface.

The computational tool is designed to handle a wide range

of aerodynamic problems of different scales. However, as

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:5, 2018

518

Bound vortex
sheet

Free vortex
sheet

Lifting
body

Wake

Fig. 1 Bound vortex description

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

Current
simulation

Ghommem
2011 (UVLM)

Stanford & Beran
2010 (UVLM)

Neef & Hummel
2002 (Euler)

t/T

C
L

(a) Pitch α = 0◦

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Current
simulationGhommem

2011 (UVLM)

Stanford & Beran
2010 (UVLM)

Neef & Hummel
2002 (Euler)

t/T

C
L

(b) Pitch α = 4◦

Fig. 2 Variations of the lift coefficient over one flapping cycle: comparison
against other flow solvers

the domain grows, the number of pairwise interactions to

be accounted for grows significantly. This leads to a major

increment in the computational expenses of forming the

algebraic system and inverting the resulting dense matrix.

Thus, we propose to decompose the domain into two regions

and compute the contributions of the vortex segments in each

part with two different mechanisms. In the proximal part of

Fig. 3 Simulations of the wake patterns of the three flapping wings. Contour
color levels denote the vorticity strength of the wake

the domain to the target point, we use the analytical expression

based on Biot-Savart law to compute the contributions of the

vortex sheets to the velocities. In the distal part of the domain,

away from the point, we develop a pointwise approximation to

compute the contributions. The process is recursively repeated

until the contribution of all the vortex segments is evaluated

on each target point. The partitioning of the domain allows to

speed up further the simulations.
Our proposed numerical tool combining the use of compiled

language (Fortran) and user-interactive problem solving

environment (Python) presents several advantages:

• Easy-to use and open source tool. The computational tool

will be made available as an open source software tool

to serve the needs of users and developers seeking to

simulate potential flow around moving bodies.

• High flexibility and high performance. The computational

tool is designed to cover a broad range of applications

(e.g., flapping wings, formation flight, rotating blades,

and suspension bridges). The code interface uses Python

to provide a flexible working environment for users.

The code back-end uses Fortran, which is a low-level

compiling language, to ensure reasonable simulation

times.

• Efficient and reliable. The UVLM which presents the

basis of the developed computational tool has been

widely verified and used for the design and performance

assessment of various aerodynamic systems. Furthermore,

the tool has the capability to simulate multi-body

interactions and enclosure effects (i.e., the proximity to

obstacles such as ground and walls).

• Potential extensibility. The computational tool is intended

to provide a powerful and extensible platform for the

numerical simulations of aeroelastic systems. The tool

also provides a solid foundation for being coupled to

multidisciplinary optimization tools for design purposes.

III. RESULTS AND DISCUSSION

We simulate the response several aerodynamic systems to

demonstrate the capability of the computational framework to

handle a broad range of applications. The main purpose of

these simulations is to compare the performance and accuracy

of the proposed numerical approximation against standard

UVLM implementation and other numerical methods.
We consider a flapping/twisting wing in forward flight. The

wing has a rectangular shape with a root chord c = 1 cm and

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:5, 2018

519

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102

0

10

20

30

40

50

Reduced

Full

rs =0Λ
rs =2Λrs =4Λrs =6Λ

rs =8Λ

rs =10Λ
rs =20Λ

rs =30Λ

rs =40Λ

rs =50Λ

rs =100Λ

rs =0Λrs =2Λ
rs =4Λ

rs =6Λrs =8Λrs =10Λ
rs =20Λ

rs =30Λ

rs =40Λ

rs =50Λ

rs =100Λ

||e||L2

S
a
v
in
g
[%

]

Fig. 4 Computational saving vs error for the three birds flapping wing problem

Fig. 5 Simulation of the flow past rotating blades

a wingspan b = 8 cm. The transversal section of the wing

consists of a NACA 0012 airfoil. The wing moves forward

at a speed v
¯

and flaps with a maximum angle of θmax and

at a flapping frequency of ωf . A linear deformation along the

span of the wing is introduced with a maximum twisting angle

β = 4◦ at the tip of the wing. The twisting is out of phase

with the flapping by Ψβ = 90◦. The parameters used in the

test case are presented in Table I.

TABLE I
FLAPPING/TWISTING WING PROBLEM DATA

Parameter
Flight velocity (v

¯
in m/s) 10

Flapping frequency (ωf in Hz) 2
Reduce frequency (k = ωf/2/u

¯∞
) 0.1

Flapping amplitude (θmax in ◦) 15
Maximum twisting (β in ◦) 4
Twisting phase angle (Ψβ in ◦) 90
Pitch (α in ◦) 0/4
Flapping period (T = 2π/ω in s) π
Time step (t = T/40 in s) π/40

In Fig. 2, we plot the lift coefficient for one flapping

cycle. The pitch angle is set equal to 0o and 4o. The current

simulation results compare very well with those obtained from

the Euler flow simulations preformed in [13] and previous

studies using UVLM-based implementations [5, 6], showing

the capability of the computational tool to predict accurately

the unsteady aerodynamic loads generated from flapping wings

interacting with air.

The flight of three birds in a V-shape formation flight is

considered as one of the numerical test problems. We use

the computational tool to simulate the flow over flapping

wings flying in grouping arrangements and in proximity of

each other. This numerical example illustrates the ability of

the developed tool to handle multiple bodies. The analysis of

formation flights can be helpful to develop an understanding

of the potential power saving that birds can achieve through

organized patterns when traveling over long distances without

stopping and feeding [14]. Fig. 3 shows the three flapping

wings and the shed wake. This aerodynamic problem is

solved using two methods: the first uses the full domain and

the second assumes a reduced domain by considering the

symmetry of the problem.

To assess the potential of the proposed pointwise

approximation to speed up the simulations while maintaining

good accuracy, the L2 error norm of the circulation on the

bound sheet, given by (1), is evaluated. Note that only the

error norm in the circulation of the bound sheet is considered

as this circulation determines all the aerodynamics loads [15].

¯||e||L2 =

〈(
elements∑

i=0

|Γi
∞ − Γi

rs |2
)0.5

: 0 < rs < ∞
〉max

.

(1)

Here, Γi
∞ refers to the circulation of the i-th element on

the bound sheet computed with the analytical method and

Γi
rs is the circulation computed with the proposed approach

and using the close-to-target parameter rs that splits the

simulated domain into two regions. 〈〉max refers to the

maximum value of error norm among all the time steps. The

computational time of solving one time step is used to estimate

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:5, 2018

520

10−5 10−4 10−3 10−2 10−1 100 101 102
0

10

20

30

40

50

rs =0Λ
rs =2Λ

rs =4Λ

rs =6Λ

rs =8Λ

rs =10Λ

rs =20Λ

rs =30Λ

rs =40Λ

||e||L2

S
a
v
in
g
[%

]

Fig. 6 Computational saving vs error for the rotating blades problem

the computational cost. Each time step, the computational tool

builds an algebraic system to compute the bound circulation,

updates the lattice position, transports the bound circulation

into the free vortex and finds the new wake distribution. The

cost is estimated as the average computational time over all

the time steps.

A relevant measure to assess the performance of the tool

is the saving in the computational time, achieved when

employing the proposed pointwise approximation, relative to

the error. The computation of this saving is performed based on

the estimates of cost and error as described above. The average

saving in the computational time relative to the error obtained

when varying the values of the close-to-target parameter rs is

presented in Fig. 4. The maximum saving in the computational

time that the pointwise approximation yields is 32% when

considering the full domain and 44% in the case of the reduced

domain. These values are not entirely practical because the

maximum saving results in high error. Reasonable savings

in computational time are achieved when the close-to-target

parameter rs is taken bigger than 40. For instance, the error

observed with rs = 40 is of order O(10−3) and the saving

reaches a maximum of 29%. Moreover if an error of order

O(10−5) is required in the solution, a saving in computational

time of 5% is still achievable.

Next, we simulate the aerodynamic response of rigid

rotating blades subjected to an incoming steady freestream

flow. We consider a wind turbine composed of three blades,

each 120 degrees out of phase from each other. We discretize

the problem using six elements along the chordwise direction

and 14 elements along the blade spanwise direction. The

transversal section of the blade is a NACA83XX airfoil.

We use the computational framework to simulate the

interactions of the multiple grids (three blades) while varying

the values of the parameter rs. Fig. 5 shows the formation and

shedding of the bound vortices into the wake. The roll-up of

the wake vortices shed from the blades trailing edge can be

observed.

To show the tradeoffs between the possible computational

saving (obtained from the pointwise approximation) and the

loss in the aerodynamic solution accuracy, we plot in Fig. 6

the variations of the computational saving with the error

when varying the values of the parameter rs. We observe

a nearly-linear trend followed by a stabilization indicating

that setting the parameter rs greater than a certain value (8

Λ) does not speed up significantly the simulations but this

has a noticeable effect on the accuracy of the solution as

can be deduced from the large errors. Assuming an error

of approximation in the order of O (
10−3

)
, a maximum

saving in time of 20% is obtained. These results demonstrate

the capability of the computational framework to speed up

the aerodynamic simulations while keeping a good level of

accuracy. Furthermore, the user has the possibility to select

the potential saving in the computational cost based on the

required accuracy of the simulated aerodynamic problem and

the objective of the study. For instance, optimization and

sensitivity analyses require running the forward aerodynamic

problem several times and then considering ways to speed up

the simulations such as the proposed pointwise approximation

will be helpful to conduct such analyses within a reasonable

time frame.

Other aerodynamic problems are also simulated to validate

the numerical prediction of the aerodynamic loads against

higher-fidelity solvers and assess further the performance of

the developed computational tool.

IV. CONCLUSIONS

In this work, we developed and tested a fast and

user-friendly computational framework for aerodynamic

simulations. The computational tool is based on

mixed-language programming approach combining

Python for high-level management of grid objects and

processing the aerodynamic quantities and Fortran for the

computationally-demanding kernels. We used this tool to

simulate a set of aerodynamic problems and demonstrate

its flexibility and efficiency. We also showed the potential

computational saving in the simulations thanks to the new

implementation of the unsteady vortex lattice method.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:5, 2018

521

REFERENCES

[1] R. E. Perez, P. W. Jansen, J. R. R. A. Martins, pyOpt: a python-based
object-oriented framework for nonlinear constrained optimization,
Structural and Multidisciplinary Optimization 45 (1) (2012) 101 – 118.

[2] J. J. Alonso, P. LeGresley, E. van der Weide, J. R. R. A. Martins,
J. J. Reuther, pymdo: A framework for high-fidelity multi-disciplinary
optimization, in: 10th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, AIAA 20044480, 2004.

[3] Y.-Y. Chen, D. L. Bilyeu, L. Yang, S.-T. J. Yu, Solvcon: A python-based
cfd software framework for hybrid parallelization, in: 49th AIAA
Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, AIAA 2011-1065, 2011.

[4] L. Dalcin, N. Collier, P. Vignal, A. M. A. Cortes, V. M. Calo, Petiga:
A framework for high-performance isogeometric analysis, Computer
Methods in Applied Mechanics and Engineering 308 (2016) 151–181.

[5] M. Ghommem, M. R. Hajj, D. T. Mook, B. K. Stanford, P. S. Beran,
L. T. Watson, Global optimization of actively-morphing flapping wings,
Journal of Fluids and Structures 30 (2012) 210–228.

[6] B. K. Stanford, P. S. Beran, Analytical sensitivity analysis of an unsteady
vortex-lattice method for flapping-wing optimization, Journal of Aircraft
47 (2010) 647–662.

[7] A. T. Nguyen, J.-K. Kim, J.-S. Han, J.-H. Han, Extended unsteady
vortex-lattice method for insect flapping wings, Journal of Aircraft 0
(2016) 1–10.

[8] J. D. Colmenares, O. D. Lpez, S. Preidikman, Computational study of
a transverse rotor aircraft in hover using the unsteady vortex lattice
method, Mathematical Problems in Engineering 2015, article ID 478457.

[9] A. Rosenberg, A. Sharma, A prescribed-wake vortex lattice method for
preliminary design of co-axial, dual-rotor wind turbines, Journal of Solar
Energy Engineering 138 (2016) 1–9.

[10] B. F. Ng, H. Hesse, R. Palacios, J. M. R. Graham, E. C. Kerrigan,
Aeroservoelastic state-space vortex lattice modeling and load alleviation
of wind turbine blades, Wind Energy 18 (2015) 1317–1331.

[11] G. Tescione, C. S. Ferreira, G. van Bussel, Analysis of a free vortex
wake model for the study of the rotor and near wake flow of a vertical
axis wind turbine, Renewable Energy 87 (2016) 552–563.

[12] M. Jeona, S. Leea, S. Leeb, Unsteady aerodynamics of offshore floating
wind turbines in platform pitching motion using vortex lattice method,
Renewable Energy 65 (2014) 207–212.

[13] M. F. Neef, D. Hummel, Euler Solutions for a Finite-Span Flapping
Wing in Mueller T. J. (ed.), Fixed and Flapping Wing Aerodynamics
for Micro Air Vehicle Applications, American Institute of Aeronautics
and Astronautics, Inc., Reston, 2004.

[14] M. Ghommem, V. Calo, Flapping wings in line formation flight: a
computational analysis, The Aeronautical Journal 118 (2014) 485–501.

[15] J. Katz, A. Plotkin, Low-Speed Aerodynamics, Cambridge University
Press, MA, 2001.

