Studies on Physiochemical Properties of Tomato Powder as Affected by Different Dehydration Methods and Pretreatments

Tomato powder has good potential as substitute of tomato paste and other tomato products. In order to protect physicochemical properties and nutritional quality of tomato during dehydration process, investigation was carried out using different drying methods and pretreatments. Solar drier and continuous conveyor (tunnel) drier were used for dehydration where as calcium chloride (CaCl2), potassium metabisulphite (KMS), calcium chloride and potassium metabisulphite (CaCl2 +KMS), and sodium chloride (NaCl) selected for treatment.. lycopene content, dehydration ratio, rehydration ratio and non-enzymatic browning in addition to moisture, sugar and titrable acidity were studied. Results show that pre-treatment with CaCl2 and NaCl increased water removal and moisture mobility in tomato slices during drying of tomatoes. Where CaCl2 used along with KMS the NEB was recorded the least compared to other treatments and the best results were obtained while using the two chemicals in combination form. Storage studies in LDPE polymeric and metalized polyesters films showed less changes in the products packed in metallized polyester pouches and even after 6 months lycopene content did not decrease more than 20% as compared to the control sample and provide extension of shelf life in acceptable condition for 6 months. In most of the quality characteristics tunnel drier samples presented better values in comparison to solar drier.

Characteristics of Suspended Solids Removal by Electrocoagulation

The electrochemical coagulation of a kaolin suspension was investigated at the currents of 0.06, 0.12, 0.22, 0.44, 0.85 A (corresponding to 0.68, 1.36, 2.50, 5.00, 9.66 mA·cm-2, respectively) for the contact time of 5, 10, 20, 30, and 50 min. The TSS removal efficiency at currents of 0.06 A, 0.12 A and 0.22 A increased with the amount of iron generated by the sacrificial anode, while the removal efficiencies did not increase proportionally with the amount of iron generated at the currents of 0.44 and 0.85 A, where electroflotation was clearly observed. Zeta potential measurement illustrated the presence of the highly positive charged particles created by sorption of highly charged polymeric metal hydroxyl species onto the negative surface charged kaolin particles at both low and high applied currents. The disappearance of the individual peaks after certain contact times indicated the attraction between these positive and negative charged particles causing agglomeration. It was concluded that charge neutralization of the individual species was not the only mechanism operating in the electrocoagulation process at any current level, but electrostatic attraction was likely to co-operate or mainly operate.

Influence of PLA Film Packaging on the Shelf Life of Soft Cheese Kleo

Experiments were carried out at the Faculty of Food Technology of Latvia University of Agriculture (LLU). Soft cheese Kleo produced in Latvia was packed in a biodegradable PLA without barrierproperties and VC999 BioPack lidding film PLA, coated with a barrier of pure silicon oxide (SiOx) and in combination with modified atmosphere (MAP) the influence on the shelf life was investigated and compared with some conventional (OPP, PE/PA, PE/OPA and Multibarrier 60) polymer film impact. Modified atmosphere consisted of carbon dioxide CO2 (E 290) 30% and nitrogen N2 (E 941) 70%. The analyzable samples were stored at the temperature of +4.0±0.5 °C up to 32 days- and analyzed before packaging and in the 0, 5th, 11th, 15th, 18th, 22nd, 25th, 29th and 32nd day of storage. The shelf life was extended along to 32 days, good outside appearance and lactic acid aroma was observed.

In vitro Studies of Mucoadhesiveness and Release of Nicotinamide Oral Gels Prepared from Bioadhesive Polymers

The aim of the present study was to evaluate the mucoadhesion and the release of nicotinamide gel formulations using in vitro methods. An agar plate technique was used to investigate the adhesiveness of the gels whereas a diffusion apparatus was employed to determine the release of nicotinamide from the gels. In this respect, 10% w/w nicotinamide gels containing bioadhesive polymers: Carbopol 934P (0.5-2% w/w), hydroxypropylmethyl cellulose (HPMC) (4-10% w/w), sodium carboxymethyl cellulose (SCMC) (4-6% w/w) and methylcellulose 4000 (MC) (3-5% w/w) were prepared. The gel formulations had pH values in the range of 7.14 - 8.17, which were considered appropriate to oral mucosa application. In general, the rank order of pH values appeared to be SCMC > MC4000 > HPMC > Carbopol 934P. Types and concentrations of polymers used somewhat affected the adhesiveness. It was found that anionic polymers (Carbopol 934 and SCMC) adhered more firmly to the agar plate than the neutral polymers (HPMC and MC 4000). The formulation containing 0.5% Carbopol 934P (F1) showed the highest release rate. With the exception of the formulation F1, the neutral polymers tended to give higher relate rates than the anionic polymers. For oral tissue treatment, the optimum has to be balanced between the residence time (adhesiveness) of the formulations and the release rate of the drug. The formulations containing the anionic polymers: Carbopol 934P or SCMC possessed suitable physical properties (appearance, pH and viscosity). In addition, for anionic polymer formulations, justifiable mucoadhesive properties and reasonable release rates of nicotinamide were achieved. Accordingly, these gel formulations may be applied for the treatment of oral mucosal lesions.

Removal of Boron from Waste Waters by Ion- Exchange in a Batch System

Boron minerals are very useful for various industrial activities, such as glass industry and detergent industry, due to its mechanical and chemical properties. During the production of boron compounds, many of these are introduced into the environment in the form of waste. Boron is also an important micro nutrient for the plants to vegetate but if it exists in high concentrations, it could have toxic effects. The maximum boron level in drinking water for human health is given as 0.3 mg/L in World Health Organization (WHO) standards. The toxic effects of boron should be noted especially for dry regions, thus, in recent years, increasing attention has been paid to remove the boron from waste waters. In this study, boron removal is implemented by ion exchange process using Amberlite IRA-743 resin. Amberlite IRA-743 resin is a boron specific resin and it belongs to the polymerizate sorbent group within the aminopolyol functional group. Batch studies were performed to investigate the effects of various experimental parameters, such as adsorbent dose, initial concentration and pH, on the removal of boron. It is found that, when the adsorbent dose increases removal of boron from the liquid phase increases. However, an increase in the initial concentration decreases the removal of boron. The effective pH values for removal of boron are determined between 8.5 and 9. Equilibrium isotherms were also analyzed by Langmuir and Freundlich isotherm models. The Langmuir isotherm is obeyed better than the Freundlich isotherm.

Twin-Screw Extruder and Effective Parameters on the HDPE Extrusion Process

In the process of polyethylene extrusion polymer material similar to powder or granule is under compression, melting and transmission operation and on base of special form, extrudate has been produced. Twin-screw extruders are applicable in industries because of their high capacity. The powder mixing with chemical additives and melting with thermal and mechanical energy in three zones (feed, compression and metering zone) and because of gear pump and screw's pressure, converting to final product in latest plate. Extruders with twin-screw and short distance between screws are better than other types because of their high capacity and good thermal and mechanical stress. In this paper, process of polyethylene extrusion and various tapes of extruders are studied. It is necessary to have an exact control on process to producing high quality products with safe operation and optimum energy consumption. The granule size is depending on granulator motor speed. Results show at constant feed rate a decrease in granule size was found whit Increase in motor speed. Relationships between HDPE feed rate and speed of granulator motor, main motor and gear pump are calculated following as: x = HDPE feed flow rate, yM = Main motor speed yM = (-3.6076e-3) x^4+ (0.24597) x^3+ (-5.49003) x^2+ (64.22092) x+61.66786 (1) x = HDPE feed flow rate, yG = Gear pump speed yG = (-2.4996e-3) x^4+ (0.18018) x^3+ (-4.22794) x^2+ (48.45536) x+18.78880 (2) x = HDPE feed flow rate, y = Granulator motor speed 10th Degree Polynomial Fit: y = a+bx+cx^2+dx^3... (3) a = 1.2751, b = 282.4655, c = -165.2098, d = 48.3106, e = -8.18715, f = 0.84997 g = -0.056094, h = 0.002358, i = -6.11816e-5 j = 8.919726e-7, k = -5.59050e-9

Efficient Preparation and Characterization of Carbohydrate Based Monomers. D-mannose Derivatives

The field of polymeric biomaterials is very important from the socio-economical viewpoint. Synthetic carbohydrate polymers are being increasingly investigated as biodegradable, biocompatible and biorenewable materials. The aim of this study was to synthesize and characterize some derivatives based on D-mannose. D-mannose was chemically modified to obtain 1-O-allyl-2,3:5,6-di- O-isopropylidene-D-mannofuranose and 1-O-(2-,3--epoxy-propyl)- 2,3:5,6-di-O-isopropylidene-D-mannofuranose. The chemical structure of the resulting compounds was characterized by FT-IR and NMR spectroscopy, and by HPLC-MS.

Optical Limiting Characteristics of Core-Shell Nanoparticles

TiO2 nanoparticles were synthesized by hydrothermal method at 180°C from TiOSO4 aqueous solution with1m/l concentration. The obtained products were coated with silica by means of a seeded polymerization technique for a coating time of 1440 minutes to obtain well defined TiO2@SiO2 core-shell structure. The uncoated and coated nanoparticles were characterized by using X-Ray diffraction technique (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) to study their physico-chemical properties. Evidence from XRD and FTIR results show that SiO2 is homogenously coated on the surface of titania particles. FTIR spectra show that there exists an interaction between TiO2 and SiO2 and results in the formation of Ti-O-Si chemical bonds at the interface of TiO2 particles and SiO2 coating layer. The non linear optical limiting properties of TiO2 and TiO2@SiO2 nanoparticles dispersed in ethylene glycol were studied at 532nm using 5ns Nd:YAG laser pulses. Three-photon absorption is responsible for optical limiting characteristics in these nanoparticles and it is seen that the optical nonlinearity is enhanced in core-shell structures when compared with single counterparts. This effective three-photon type absorption at this wavelength, is of potential application in fabricating optical limiting devices.

Engineered Cement Composite Materials Characterization for Tunneling Applications

Cements, which are intrinsically brittle materials, can exhibit a degree of pseudo-ductility when reinforced with a sufficient volume fraction of a fibrous phase. This class of materials, called Engineered Cement Composites (ECC) has the potential to be used in future tunneling applications where a level of pseudo-ductility is required to avoid brittle failures. However uncertainties remain regarding mechanical performance. Previous work has focused on comparatively thin specimens; however for future civil engineering applications, it is imperative that the behavior in tension of thicker specimens is understood. In the present work, specimens containing cement powder and admixtures have been manufactured following two different processes and tested in tension. Multiple matrix cracking has been observed during tensile testing, leading to a “strain-hardening" behavior, confirming the possible suitability of ECC material when used as thick sections (greater than 50mm) in tunneling applications.

Kinetic, Thermodynamic and Process Modeling of Synthesis of UV Curable Glyceryl and Neopentyl Glycol Acrylates

Curing of paints by exposure to UV radiations is emerging as one of the best film forming technique as an alternative to traditional solvent borne oxidative and thermal curing coatings. The composition and chemistry of UV curable coatings and role of multifunctional and monofunctional monomers, oligomers, and photoinitiators have been discussed. The limitations imposed by thermodynamic equilibrium and tendency for acrylic double bond polymerizations during synthesis of multifunctional acrylates have been presented. Aim of present investigation was thus to explore the reaction variables associated with synthesis of multifunctional acrylates. Zirconium oxychloride was evaluated as catalyst against regular acid functional catalyst. The catalyzed synthesis of glyceryl acrylate and neopentyl glycol acrylate was conducted by variation of following reaction parameters: two different reactant molar ratios- 1:4 and 1:6; catalyst usage in % by moles on polyol- 2.5, 5.0 and 7.5 and two different reaction temperatures- 45 and 75 0C. The reaction was monitored by determination of acid value and hydroxy value at regular intervals, besides TLC, HPLC, and FTIR analysis of intermediates and products. On the basis of determination of reaction progress over 1-60 hrs, the esterification reaction was observed to follow 2nd order kinetics with rate constant varying from 1*10-4 to 7*10-4. The thermal and catalytic components of second order rate constant and energy of activation were also determined. Uses of these kinetic and thermodynamic parameters in design of reactor for manufacture of multifunctional acrylate ester have been presented. The synthesized multifunctional acrylates were used to formulate and apply UV curable clear coat followed by determination of curing characteristics and mechanical properties of cured film. The overall curing rates less than 05 min. were easily attained indicating economical viability of radiation curable system due to faster production schedules

Analysis of Polymer Surface Modifications due to Discharges Initiated by Water Droplets under High Electric Fields

This paper investigates the influence of various parameters on the behaviour of water droplets on polymeric surfaces under high electric fields. An inclined plane test was carried out to understand the droplet behaviour in strong electric field. Parameters such as water droplet conductivity, droplet volume, polymeric surface roughness and droplet positioning with respect to the electrodes were studied. The flashover voltage is affected by all aforementioned parameters. The droplet positioning is in some cases more vital than the droplet volume. Surface damages were analysed using Scanning Electron Microscopy (SEM) studies and by Energy dispersive X-ray Analysis (EDAX). It is observes that magnitude of discharge have direct influence on amount of surface da

Stress versus Strain Behavior of Geopolymer Cement under Triaxial Stress Conditions in Saline and Normal Water

Geopolymer cement was evaluated as wellbore sealing material for carbon dioxide geosequestration application. Curing of cement system in saline water and strength testing in triaxial stress state condition under lateral confinement is relevant to primary cementing in CO2 geosequestration wellbore in saline aquifer. Geopolymer cement was cured in saline water (both at ambient conditions for 28 days and heated (60°C) conditions for 12 hours) and tested for triaxial strength at different levels of lateral confinement. Normal water and few other curing techniques were also studied both for geopolymer and API ‘G’ cement. Results reported were compared to evaluate the suitability of saline water for curing of geopolymer cement. Unconfined compression test results showed higher strength for curing in saline water than normal water. Besides, testing strength under lateral confinement demonstrated the material failure behavior from brittle to plastic.

Generalized Predictive Control of Batch Polymerization Reactor

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

Electric Field and Potential Distributions along Surface of Silicone Rubber Polymer Insulators Using Finite Element Method

This paper presents the simulation the results of electric field and potential distributions along surface of silicone rubber polymer insulators. Near the same leakage distance subjected to 15 kV in 50 cycle salt fog ageing test, alternate sheds silicone rubber polymer insulator showed better contamination performance than straight sheds silicone rubber polymer insulator. Severe surface ageing was observed on the straight sheds insulator. The objective of this work is to elucidate that electric field distribution along straight sheds insulator higher than alternate shed insulator in salt fog ageing test. Finite element method (FEM) is adopted for this work. The simulation results confirmed the experimental data, as well.

Simulation and Design of the Geometric Characteristics of the Oscillatory Thermal Cycler

Since polymerase chain reaction (PCR) has been invented, it has emerged as a powerful tool in genetic analysis. The PCR products are closely linked with thermal cycles. Therefore, to reduce the reaction time and make temperature distribution uniform in the reaction chamber, a novel oscillatory thermal cycler is designed. The sample is placed in a fixed chamber, and three constant isothermal zones are established and lined in the system. The sample is oscillated and contacted with three different isothermal zones to complete thermal cycles. This study presents the design of the geometric characteristics of the chamber. The commercial software CFD-ACE+TM is utilized to investigate the influences of various materials, heating times, chamber volumes, and moving speed of the chamber on the temperature distributions inside the chamber. The chamber moves at a specific velocity and the boundary conditions with time variations are related to the moving speed. Whereas the chamber moves, the boundary is specified at the conditions of the convection or the uniform temperature. The user subroutines compiled by the FORTRAN language are used to make the numerical results realistically. Results show that the reaction chamber with a rectangular prism is heated on six faces; the effects of various moving speeds of the chamber on the temperature distributions are examined. Regarding to the temperature profiles and the standard deviation of the temperature at the Y-cut cross section, the non-uniform temperature inside chamber is found as the moving speed is larger than 0.01 m/s. By reducing the heating faces to four, the standard deviation of the temperature of the reaction chamber is under 1.4×10-3K with the range of velocities between 0.0001 m/s and 1 m/s. The nature convective boundary conditions are set at all boundaries while the chamber moves between two heaters, the effects of various moving velocities of the chamber on the temperature distributions are negligible at the assigned time duration.

Group Contribution Parameters for Nonrandom Lattice Fluid Equation of State involving COSMO-RS

Group contribution based models are widely used in industrial applications for its convenience and flexibility. Although a number of group contribution models have been proposed, there were certain limitations inherent to those models. Models based on group contribution excess Gibbs free energy are limited to low pressures and models based on equation of state (EOS) cannot properly describe highly nonideal mixtures including acids without introducing additional modification such as chemical theory. In the present study new a new approach derived from quantum chemistry have been used to calculate necessary EOS group interaction parameters. The COSMO-RS method, based on quantum mechanics, provides a reliable tool for fluid phase thermodynamics. Benefits of the group contribution EOS are the consistent extension to hydrogen-bonded mixtures and the capability to predict polymer-solvent equilibria up to high pressures. The authors are confident that with a sufficient parameter matrix the performance of the lattice EOS can be improved significantly.

Flowability and Strength Development Characteristics of Bottom Ash Based Geopolymer

Despite of the preponderant role played by cement among the construction materials, it is today considered as a material destructing the environment due to the large quantities of carbon dioxide exhausted during its manufacture. Besides, global warming is now recognized worldwide as the new threat to the humankind against which advanced countries are investigating measures to reduce the current amount of exhausted gases to the half by 2050. Accordingly, efforts to reduce green gases are exerted in all industrial fields. Especially, the cement industry strives to reduce the consumption of cement through the development of alkali-activated geopolymer mortars using industrial byproducts like bottom ash. This study intends to gather basic data on the flowability and strength development characteristics of alkali-activated geopolymer mortar by examining its FT-IT features with respect to the effects and strength of the alkali-activator in order to develop bottom ash-based alkali-activated geopolymer mortar. The results show that the 35:65 mass ratio of sodium hydroxide to sodium silicate is appropriate and that a molarity of 9M for sodium hydroxide is advantageous. The ratio of the alkali-activators to bottom ash is seen to have poor effect on the strength. Moreover, the FT-IR analysis reveals that larger improvement of the strength shifts the peak from 1060 cm–1 (T-O, T=Si or Al) toward shorter wavenumber.

Blind Spot Area Tracking Solution Using 1x12 POF-Based Optical Couplers

Optical 1x12 fused-taper-twisted polymer optical fiber (POF) couplers has been fabricated by a perform technique. Characterization of the coupler which proposed to be used in passive night vision application to tracking a blind sport area was reported. During the development process of fused-taper-twisted POF couplers was carried out, red LED fully utilized to be injected into the couplers to test the quality of fabricated couplers. Some characterization parameters, such as optical output power, POFs attenuation characteristics and power losses on the network were observed. The maximum output power efficiency of the coupler is about 40%, but it can be improved gradually through experience and practice.

Hair Mechanical Properties Depending on Age and Origin

Hair is a non homogenous complex material which can be associated with a polymer. It is made up 95% of Keratin. Hair has a great social significance for human beings. In the High Middle Ages, for example, long hairs have been reserved for kings and nobles. Most common interest in hair is focused on hair growth, hair types and hair care, but hair is also an important biomaterial which can vary depending on ethnic origin or on age, hair colour for example can be a sign of ethnic ancestry or age (dark hair for Asiatic, blond hair for Caucasian and white hair for old people in general). In this context, different approaches have been conducted to determine the differences in mechanical properties and characterize the fracture topography at the surface of hair depending on its type and its age. A tensile testing machine was especially designed to achieve tensile tests on hair. This device is composed of a microdisplacement system and a force sensor whose peak load is limited to 3N. The curves and the values extracted from each experiment, allow us to compare the evolution of the mechanical properties from one hair to another. Observations with a Scanning Electron Microscope (SEM) and with an interferometer were made on different hairs. Thus, it is possible to access the cuticle state and the fracture topography for each category.

Swelling Behavior and Cytotoxicity of Maleic Acid Grafted Chitosan

Chitosan is an attractive polysaccharide obtained by deacetylation of an abundant natural biopolymer called chitin. Chitin and chitosan are excellent materials. To improve the potential of chitin and chitosan modification is needed. In the present study, grafting of maleic acid on to chitosan by cerium ammonium nitrate in acetic acid solution was investigated with use of a microwave and reflux system. The grafted chitosan was characterized by using a Fourier-transform infrared spectrometry. The solubility and swelling behavior of grafted chitosans were determined in acetate buffer (pH 3.6), citrophosphate buffer (pH 5.6 and pH 7.0), and boric buffer (pH 9.2) solutions. The sample obtained by microwave system with use of a chitosan/maleic anhydride/ceric ammonium nitrate 0.2/3.922/0.99 gram of raw material within 30 minute showed the maximum swelling ratio (13.6) in boric buffer solution.