Viscoelastic Characterization of Bovine Trabecular Bone Samples

Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.




References:
[1] Caler W.E., Carter D.R., “Bone creep-fatigue damage accumulation”, J.
Biomech., 1989.
[2] Fondrk M., Bahniuk E., Davy D.T., Michaels C., “Some viscoplastic
characteristics of bovine and human cortical bone”, J. Biomech., 1988.
[3] Sasaki N., Nakayama Y., Yoshikawa M., Enyo A., “Stress relaxation
function of bone and bone collagen”, J. Biomech., 1993.
[4] Iyo T., Maki Y., Sasaki N., Nakata M., “Anisotropic viscoelastic
properties of cortical bone”, J. Biomech., 2003.
[5] Lakes R., Katz J.L., Sternstein S., “Viscoelastic properties of wet
cortical bone – torsional and biaxial studies”, J. Biomech., 1979.
[6] Lakes R., Katz J.L., “Viscoelastic properties of wet cortical bone,
relaxation mechanisms”, J. Biomech., 1979.
[7] Lakes R., Katz J.L., “Viscoelastic properties of wet cortical bone”, J.
Biomech., 1979.
[8] Yamashita J., Furman B.R., Rawls H.R., Wang X., “The use of dynamic
mechanical analysis to assess the viscoelastic properties of human
cortical bone”, J. Biomed. Mater. Res. (Appl. Biomater.), 2001.
[9] Quaglini V., La Russa V., Corneo S., “Nonlinear stress relaxation of
trabecular bone”, Mechanics Research Communications, 2008.
[10] Rapillard L., Chalebois M., Zysset P. H., “Compressive fatigue behavior
of human trabecular bone”, J. Biomech., 2005.
[11] Topolinsky T., Cichansky A., Mazurkiewicz A., Nowicky K., “Study of
the behavior of the trabecular bone under cyclic compression with
stepwise increasing amplitude”, J. Biomech., 2011.
[12] Keaveny T.M., Borchers R.D., Gibson L.J., Hayes W.C., “Trabecular
bone modulus and strength can depend on specimen geometry”, J.
Biomech., 1993.
[13] Choi K., Kuhn J., Ciarelli M., Goldstein S., “The elastic moduli of
human subchondral, trabecular, and cortical bone tissue and the size
dependency of cortical bone modulus”, J. Biomech., 1990.
[14] Guedes R. M., Simoes J. A., Morais J. L., “Viscoelastic behavior of
bovine cancellous bone under constant strain rate”, J. Biomech., 2006.
[15] Ashman R.B., Experimental techniques, “Bone Mechanics”, Cowin,
S.C., CRC Press, Boca Raton, FL, 1989.
[16] Kaab M.J., Putz R., Gebauer D., Plitz W., “Changes in cadaveric
cancellous vertebral bone strength in relation to time. A biomechanical
investigation”, Spine, 1998.