Ultrasonic Evaluation of Bone Callus Growth in a Rabbit Tibial Distraction Model

Ultrasound is useful in demonstrating bone mineral density of regenerating osseous tissue as well as structural alterations. A proposed ultrasound method, which included ultrasonography and acoustic parameters measurement, was employed to evaluate its efficacy in monitoring the bone callus changes in a rabbit tibial distraction osteogenesis (DO) model. The findings demonstrated that ultrasonographic images depicted characteristic changes of the bone callus, typical of histology findings, during the distraction phase. Follow-up acoustic parameters measurement of the bone callus, including speed of sound, reflection and attenuation, showed significant linear changes over time during the distraction phase. The acoustic parameters obtained during the distraction phase also showed moderate to strong correlation with consolidated bone callus density and micro-architecture measured by micro-computed tomography at the end of the consolidation phase. The results support the preferred use of ultrasound imaging in the early monitoring of bone callus changes during DO treatment.




References:
[1] J. Aronson, H. D. Shin, "Imaging techniques for bone regenerate analysis
during distraction osteogenesis", Journal of Pediatric Orthopaedics, vol
23, pp.550-560, 2003.
[2] R. Lisa, A. V. Everts, A. L. J. J. Broncker, "Bone regeneration during
distraction osteogenesis", Odontology, vol 97, pp.63-75, 2009.
[3] T. Hughes, G. V. Maffulli N, Fixsen JA., "Imaging in bone lengthening. A
review", Clinical Orthopaedics and Related Research, pp.50-53, 1994.
[4] BEIR, Health risks from exposure to low levels of ionizing radiation :
BEIR VII, Phase 2. . Washington, D.C. : National Academies Press, 2006.
[5] D. Richter, M. P. Hahn, P. A. W. Ostermann, A. Ekkernkamp, G. Muhr,
"Ultrasound monitoring of callus distraction: An alternative to
radiological diagnosis?", Langenbecks Archiv Fur Chirurgie, pp.931-933,
1996.
[6] N. Maffulli, T. Hughes, J. A. Fixsen, "Ultrasonography monitoring of
limb lengthening", Journal of Bone and Joint Surgery-British Volume, vol
74, pp.130-132, 1992.
[7] C. Bruno, S. Minniti, E. Buttura-Da-Prato, M. Albanese, P. F. Nocini, R.
Pozzi-Mucelli, "Gray-scale ultrasonography in the evaluation of bone
callus in distraction osteogenesis of the mandible: initial findings",
European Radiology, vol 18, pp.1012-1017, 2008.
[8] N. Adolphs, C. Kunz, P. Pyk, B. Hammer, B. Rahn, "Callus
mineralization following distraction osteogenesis of the mandible
monitored by scanning acoustic microscopy (SAM)", Journal of
Cranio-Maxillofacial Surgery, vol 33, pp.314-317, 2005.
[9] N. Adolphs, C. Kunz, P. Pyk, B. Hammer, B. Rahn, "Callus
mineralization following distraction osteogenesis of the mandible
monitored by scanning acoustic microscopy (SAM)", Journal of
Cranio-Maxillofacial Surgery, vol 33, pp.314-317, 2005.
[10] C. W. Chan, L. Qin, K. M. Lee, M. Zhang, J. C. Y. Cheng, K. S. Leung,
"Low intensity pulsed ultrasound accelerated bone remodeling during
consolidation stage of distraction osteogenesis", Journal of Orthopaedic
Research, vol 24, pp.263-270, 2006.
[11] J. E. Tis, R. H. Meffert, N. Inoue, E. F. McCarthy, M. S. Machen, K. A.
McHale, E. Y. S. Chao, "The effect of low intensity pulsed ultrasound
applied to rabbit tibiae during the consolidation phase of distraction
osteogenesis", Journal of Orthopaedic Research, vol 20, pp.793-800,
2002.
[12] R. Aleksyniene, Eckardt, H., Bundgaard, K., Lind, M, and Hvid, I.,
"Effects of parathyroid hormone on newly regenerated bone during
distraction osteogenesis in a rabbit tibial lengthening model. A pilot
study.", Medicina (Kaunas), pp.38-48, 2006.
[13] K. B. Jones, N. Inoue, J. E. Tis, E. F. McCarthy, K. A. McHale, E. Y. S.
Chao, Quantification of the microstructural anisotropy of distraction
osteogenesis in the rabbit tibia. 2005.
[14] J. Aronson, "Basic science and biological principles of distraction
osteogenesis", in Limb Lengthening and reconstructive surgery, S. Robert
Rozbruch SI, editor. Ed. New York: Informa Healthcare, 2007, pp.19-42.
[15] J. Aronson, "Experimental and clinical experience with distraction
osteogenesis", Cleft Palate-Craniofacial Journal, vol 31, pp.473-481,
1994.
[16] J. Aronson, B. Good, C. Stewart, B. Harrison, J. Harp, "Preliminary
studies of mineralization during distraction osteogenesis", Clinical
Orthopaedics and Related Research, pp.43-49, 1990.
[17] G. Li, A. H. R. W. Simpson, J. Kenwright, J. T. Triffitt, "Assessment of
cell proliferation in regenerating bone during distraction osteogenesis at
different distraction rates", Journal of Orthopaedic Research, vol 15,
pp.765-772, 1997.
[18] R. N. McCarthy, L. B. Jeffcott, R. N. McCartney, "Ultrasound speed in
equine cortical bone: Effects of orientation, density, porosity and
temperature", Journal of Biomechanics, vol 23, pp.1139-1143, 1990.
[19] A. A. Hijazy, S. M. Smoudi H, Qaddoum N, Al Nashash H, Ramesh K G,
"Quantitative monitoring of bone healing process using ultrasound",
Journal of the Franklin Institute, vol 343, pp.495-500, 2006.
[20] Y. P. Huang, Y. P. Zheng, S. F. Leung, A. F. T. Mak, "Reliability of
measurement of skin ultrasonic properties in vivo: a potential technique
for assessing irradiated skin", Skin Research and Technology, vol 13,
pp.55-61, 2007.
[21] Y. P. Huang, Y. P. Zheng, S. F. Leung, A. P. C. Choi, "High frequency
ultrasound assessment of skin fibrosis: Clinical results", Ultrasound in
Medicine and Biology, vol 33, pp.1191-1198, 2007.
[22] O. Gauthier, R. M ler, D. von Stechow, B. Lamy, P. Weiss, J.-M.
Bouler, E. Aguado, G. Daculsi, "In vivo bone regeneration with injectable
calcium phosphate biomaterial: A three-dimensional micro-computed
tomographic, biomechanical and SEM study", Biomaterials, vol 26,
pp.5444-5453, 2005.
[23] F. M. Elise, D. M. Zachary, B. C. Karen, J. P. Anthony, L. B. George, A.
E. Thomas, C. G. Louis, "Micro-computed tomography assessment of
fracture healing: Relationships among callus structure, composition, and
mechanical function", Bone, vol 44, pp.335-344, 2009.
[24] R. Aleksyniene, J. S. Thomsen, H. Eckardt, K. G. Bundgaard, M. Lind, I.
Hvid, "Three-dimensional microstructural properties of regenerated
mineralizing tissue after PTH (1-34) treatment in a rabbit tibial
lengthening model", Journal of Musculoskeletal & Neuronal Interactions,
vol 9, pp.268-277, 2009.
[25] J. Cohen, Statistical power analysis for the behavioral sciences 2nd. NJ:
Hillsdale, 1988.
[26] D. R. Carter, G. S. Beaupr, N. J. Giori, J. A. Helms, "Mechanobiology of
skeletal regeneration", Clinical Orthopaedics and Related Research, vol
355, pp.S41-S55, 1998.
[27] M. Mullender, A. J. El Haj, Y. Yang, M. A. van Duin, E. H. Burger, J.
Klein-Nulend, "Mechanotransduction of bone cells in vitro:
mechanobiology of bone tissue", Medical & Biological Engineering &
Computing, vol 42, pp.14-21, 2004.
[28] H. Isaksson, O. Comas, C. C. van Donkelaar, J. Mediavilla, W. Wilson, R.
Huiskes, K. Ito, "Bone regeneration during distraction osteogenesis:
Mechano-regulation by shear strain and fluid velocity", Journal of
Biomechanics, vol 40, pp.2002-2011, 2007.
[29] L. B. Kaban, P. Thurmuller, M. J. Troulis, J. Glowacki, D. Wahl, B.
Linke, B. Rahn, D. H. Perrott, "Correlation of biomechanical stiffness
with plain radiographic and ultrasound data in an experimental
mandibular distraction wound", International Journal of Oral and
Maxillofacial Surgery, vol 32, pp.296-304, 2003.
[30] E. Seeman, "Bone quality: the material and structural basis of bone
strength", Journal of Bone and Mineral Metabolism, vol 26, pp.1-8, 2008.