Time and Distance Dependence of Protons Energy Loss for Laser (pw-ps) Fusion Driven Ion Acceleration

The anomalous generation of plasma blocks by interaction of petawatt-picosecond laser pulses permits side-on ignition of uncompressed solid fusion fuel following an improved application of the hydrodynamic Chu-model for deuterium-tritium. The new possibility of side-on laser ignition depends on accelerated ions and produced ions beams of high energy particles by the nonlinear ponderomotive force of the laser pulse in the plasma block, a re-evaluation of the early hydrodynamic analysis for ignition of inertial fusion by including inhibition factor, collective effect of stopping power of alpha particles and the energy loss rate reabsorption to plasma by the protons of plasma blocks being reduced by about a factor 40.

Authors:



References:
[1] J. Badziack, Laser-driven generation of fast particles, Opto-Electronic
Review, 2007, 15, 1-12.
[2] E. Bagge, H. Hora, Calculation of the reduced penetration depth of
relativistic electrons in plasmas for nuclear fusion, Atomkernenergie ,
1974, 24, 143-146.
[3] J.L. Bobin, Nuclear fusion reactions in front propagating in solid DT. In
Laser Interaction and Related Plasma Phenomena (Schwarz H. & Hora
H., Eds.). New York: Plenum Press, 1974, Vol. 4B, 465-494.
[4] S. T. Butler and M. J. Buckingham, Energy Loss of a Fast Ion in
plasma, Physical Review, 1962, 126, 1.
[5] S. Chandrasekhar, The time of relaxation of stellar systems, Astrophys.
J., 1941, 93, 285.
[6] M.S. Chu, Thermonuclear Reaction Waves at High Density. Phys.
Fluids, 1972, 15, 412-422.
[7] D. Gabor, Wave theory of plasmas. Proc. Roy. Soc. London, 1952, A
213, 72-86.
[8] M. Ghorannviss, B. Malekynia, H. Hora, G. H. Miley, X. He, Inhibition
factor reduces fast ignition threshold for laser fusion using nonlinear
force driven block acceleration, Laser and Particle Beams, 2008, 26,
105.
[9] H. Hora, P.S. Ray, Increased nuclear fusion yields of inertially confined
DT plasma due to reheat. Zeitschrift f. Naturforschung, 1978, A33 890-
894.
[10] H. Hora, J. Badziack, M. N. Read, Yu-Tong Li, Tian-Jiaoliang, Yu
cang, Hong Liu, Zheng-Ming Sheng, Jie Zhang, F. Osman, G.H. Miley,
Weiyan Zhang, Xianto He, H. Peng, S. Glowacz, S. Jablonski, J.
Wolowski, Z. Sklandanowski, K. Jungwirth, K. Rohlena, J.
Ullschemied, Physics of Plasmas , 2007, 14, 072701-1 - 072701-7.
[11] H. Hora, B. Malekynia, M. Ghoranneviss, G.H. Miley, X.T. He,
Twenty times lower ignition threshold for laser driven fusion using
collective effects and the inhibition factor. Appl. Phys. Letters, 2008,
93, 011101.
[12] R.C. Kirkpatrick, J.A.Wheeler, Volume ignition of laser compressed
plasmas, Nuclear Fusion, 1981, 21, 398-404.
[13] J.R. Kerns, C.W. Rogers, J.G. Clark, Penetration of terawatt electron
beam in polyethyens. Bulletin Am. Phys. Soc., 1972, 17, 692.
[14] H.C. Kranzer, Thermalization of a fast ion in a plasma. Phys. Fluids,
1961, 4, 214-221.
[15] K.S. Lackner, S.A. Colgate, N.L. Johnson, R.C. Kirkpatrick, R.
Menikoff, A.G. Petschek, Equilibrium Ignition for ICF Capsules, Laser
Interaction and Related Plasma Phenomena, AIP Conf. Proceedings
No. 318, G.H. Miley ed., New York: Am. Inst. Phys, 1994, p. 356-361.
[16] B. Malekynia, H. Hora, M. Ghoranneviss, G.H. Miley, Collective alpha
particle stopping for reduction of the threshold for laser fusion using
nonlinear force driven plasma blocks, Laser & Part. Beams, 2009, 27,
233-241.
[17] P.S. Ray, H. Hora, Corrected penetration length for slphas for reheat
calculations. Laser Interaction and Related Plasma Phenomena. H.
Scharz and H. Hora eds, New York: Plenum Press, 1977, Vol. 4B,
1081-1101.
[18] L. Spitzer, Physics of Ionized Gases, Interscience publishers, Inc., New
York, 1962.
[19] J. Stepanek, Charged particle loss rates and ranges in plasma. In Laser
Interaction and Related Plasma Phenomena, New York: Plenum Press
(Schwarz, H., Hora, H., Lubin, M., Yaakobi, B., eds.), 1981, Vol. 5, pp.
341-351.