Thermodynamic Cycle Analysis for Overall Efficiency Improvement and Temperature Reduction in Gas Turbines

The paper presents a thermodynamic cycle analysis
for three turboshaft engines. The first cycle is a Brayton cycle,
describing the evolution of a classical turboshaft, based on the
Klimov TV2 engine. The other four cycles aim at approaching an
Ericsson cycle, by replacing the Brayton cycle adiabatic expansion in
the turbine by quasi-isothermal expansion. The maximum quasi-
Ericsson cycles temperature is set to a lower value than the maximum
Brayton cycle temperature, equal to the Brayton cycle power turbine
inlet temperature, in order to decrease the engine NOx emissions.
Also, the power/expansion ratio distribution over the stages of the gas
generator turbine is maintained the same. In two of the considered
quasi-Ericsson cycles, the efficiencies of the gas generator turbine, as
well as the power/expansion ratio distribution over the stages of the
gas generator turbine are maintained the same as for the reference
case, while for the other two cases, the efficiencies are increased in
order to obtain the same shaft power as in the reference case. For the
two cases respecting the first condition, both the shaft power and the
thermodynamic efficiency of the engine decrease, while for the other
two, the power and efficiency are maintained, as a result of assuming
new, more efficient gas generator turbines.





References:
[1] R.T. Balmer, "Modern Engineering Thermodynamics", Academic Press,
2011
[2] W. A. Sirignano, D. Dunn-Rankin, F. Liu, B. Colcord, S. Puranam,
"Turbine Burners: Flameholding in Accelerating Flow", AIAA 2009 -
5410 in Proc. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and
Exhibit, Denver, Colorado, USA, August 2009
[3] D. G. Elliot, "Two-Fluid Magneto-Hydrodynamic Cycle for Nuclear-
Electric Power Generation", ARS J., vol. 32, pp. 924-924, 1963
[4] F. Liu, W.A. Sirignano, "Turbojet and Turbofan Engine Performance
Increases through Turbine Burners", J. Prop. Power, vol. 17, pp. 698-
705, 2001
[5] F. E. Marble, T. C. Adamson Jr., "Ignition and Combustion in a Laminar
Mixing Zone", Jet Prop., vol. 24, pp. 85, 1954
[6] H. W. Emmons, "Thin Film Combustion of Liquid Fuel", Zeitschrift für
Angewandte Mathematik und Mechanik, vol. 36, pp. 60, 1956
[7] P. M. Chang, "Chemically Reacting Nonequilibrium Boundary Layers",
in "Advances in Heat Transfer", J.P. Hartnett and T.F. Irvine Jr., Ed.,
New York: Academic Press , 1965, pp. 109 - 270
[8] O. P. Sharma, W. A. Sirignano, "On the Ignition of a Premixed Fuel by a
Hot Projectile", Comb. Sci. Tech., vol 1, pp. 481-494, 1970
[9] S. V. Patankar, D.B. Spalding, Heat and Mass Transfer in Boundary
Layers, London: Intertext, UK, 1970
[10] P. Givi, J. I. Ramos, W. A. Sirignano, "Probability Density Function
Calculation in Turbulent Chemically Reacting Round Jets, Mixing
Layers and One-dimensional Reactors", J. Non-Equilibrium
Thermodynamics, vol. 10, pp. 75-104, 1985
[11] J. Buckmaster, T. L. Jackson, A. Kumar, Combustion in High-Speed
Flows, Dordrecht Kluwer Academic, 1994
[12] C. E. Grosch, T.L. Jackson, "Ignition and Structure of a Laminar
Diffusion Flame in a Compressible Mixing Layer with Finite Rate
Chemistry", Phys. Fluids A, vol. 3, pp. 3087-3097, 1991
[13] T. L. Jackson, M. Y. Hussaini, "An Asymptotic Analysis of Supersonic
Reacting Mixing Layers", Comb. Sci. Tech., vol. 57, pp. 129, 1988
[14] H. G. Im, B. H. Chao, J. K. Bechtold, C.K. Law, "Analysis of Thermal
Ignition in the Supersonic Mixing Layer", AIAA J., vol. 32, pp. 341-349,
1994
[15] H. G. Im, B. T. Helenbrook, S. R. Lee, C. K. Law, "Ignition in the
Supersonic Hydrogen / Air Mixing Layer with Reduced Reaction
Mechanisms", J. Fluid Mech., vol. 322, pp. 275-296, 1996
[16] D. Chakraborty, H.V.N. Upadhyaya, P.J. Paul, H.S. Mukunda, "A
Thermo-chemical Exploration of a Two-dimensional Reacting
Supersonic Mixing Layer", Phys. Fluids, vol. 9, no. 11, pp. 3513-3522,
1997
[17] W.A. Sirignano, I. Kim, "Diffusion Flame in a Two-dimensional
Accelerating Mixing Layer", Phys. Fluids, vol. 9, no. 9, pp. 2617-2630,
1997
[18] X. Fang, F. Liu, W.A. Sirignano, "Ignition and Flame Studies for an
Accelerating Transonic Mixing Layer", J. Prop. Power, vol. 17, no. 5,
pp. 1058-1066, 2001
[19] C. Mehring, F. Liu, W.A. Sirignano, "Ignition and Flame Studies for a
Turbulent Acceleration Transonic Mixing Layer" in Proc. 39th
Aerospace Sciences Meeting, AIAA-2001-1096, Reno, Nevada, USA,
January 2001
[20] J. Cai, O. Icoz, F. Liu, W.A. Sirignano, "Ignition and Flame Studies for
Turbulent Transonic Mixing in a Curved Duct Flow" in Proc. 39th
Aerospace Sciences Meeting, AIAA-2001-0189, Reno, Nevada, USA,
January 2001
[21] J. Cai, O. Icoz, F. Liu, W.A. Sirignano, "Combustion in a Transonic
Turbulent Flow with Large Axial and Transverse Pressure Gradients" in
Proc. 18th ICDERS, Seattle, Washington, USA, July - August 2001
[22] F. Cheng, F. Liu, W.A. Sirignano, "Nonpremixed Combustion in an
Accelerating Turning, Transonic Flow Undergoing Transition", AIAA J.,
vol. 45, pp. 2935-2946, 2007
[23] F. Cheng, F. Liu, W.A. Sirignano, "Nonpremixed Combustion in an
Accelerating Transonic Flow Undergoing Transition", AIAA J, vol. 46,
pp. 1204-1215, 2008
[24] F. Cheng, F. Liu, W.A. Sirignano, "Reacting Mixing-Layer
Computations in a Simulated Turbine Stator Passage", J. Prop. Power,
vol. 25, no. 2, 2009
[25] J. Zelina, G.J. Sturgess, D.T. Shouse, "The Behaviour of an Ultra-
Compact Combustor (UCC) Based on Centrifugally - Enhanced
Turbulent Burning Rates", in Proc. 40th AIAA/ASME/SAE/ASEE Joint
Propulsion Conf. and Exhibit, Fort Lauderdale, FloridAIAA-2004-3541,
July 2004
[26] R.J. Quaale, R.A. Anthenien, J. Zelina, J. Ehret, "Flow Measurements in
a High Swirl Ultra Compact Combustor for Gas Turbine Engines", in
Proc. 16th ISABE Conf., ISBAE 2003-1141, Cleveland, Ohio, USA,
September 2003
[27] J. Zelina, D.T. Shouse, R.D. Hancock, "Ultra-Compact Combustors for
Advenced Gas Turbine Engines", in Proc. ASME Turbo Expo 2004,
2004-GT-53155, Vienna, Austria, June 2004
[28] J. Zelina, G.J. Sturgess, A. Mansour, R.D. Hancock, "Fuel Injection
Design Optimization for an Ultra-Compact Combustor", in Proc. 16th
ISABE Conf., ISABE 2003-1079, Cleveland, Ohio, USA, September
2003
[29] K.C. Lin, K.A. Kirdendall, P.J. Kennedy, T.A. Jackson, "Spray
Structures of Aerated Liquid Fuel Jets in Supersonic Crossflows", in
Proc. 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., AIAA-99-
2374, Los Angeles, California, USA, June 1999
[30] K.C. Lin, P.J. Kennedy, T.A. Jackson, "Spray Penetration Heights of
Angle Injected Aerated Liquid Jets in Supersonic Crossflows", in Proc.
38th Aerospace Sciences Meeting, AIAA-2000-0194, Reno, Nevada,
USA, 2000
[31] K.Y. Hsu, C. Carter, J. Crafton, M. Gruber, J. Donbar, T. Mathur, D.
Schommer, W. Terry, "Fuel Distribution About a Cavity Flameholder in
Supersonic Flow", in Proc. 36th AIAA/ASME/SAE/ASEE Joint
Propulsion Conf., AIAA-2000-3585, Huntsville, Alabama, USA, July
2000
[32] T. Mathur, S. Cox-Staufer, K.Y. Hsu, J. Crafton, J. Donbar, M. Gruber,
"Experimental Assessment of a Fuel Injector for Scramjet Applications",
in Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., AIAA-
2000-3703, Huntsville, Alabama, USA, July 2000
[33] M. Gruber, J. Donbar, T. Jackson, T. Mathur, D. Eklund, F. Bilig,
"Performance of an Aerodynamic Ramp Fuel Injector in a Scramjet
Combustor", in Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion
Conf., AIAA-2000-3708, Huntsville, Alabama, USA, July 2000
[34] T. Mathur, K.C. Lin, P.J. Kennedy, M. Gruber, J. Donbar, T. Jackson, F.
Bilig, "Liquid JP-7 Combustion in a Scramjet Combustor", in Proc. 36th
AIAA/ASME/SAE/ASEE Joint Propulsion Conf., AIAA-2000-3581,
Huntsville, Alabama, USA, July 2000
[35] G. Yu, J.G. Li, X.Y. Chang, L.H. Chen, "Investigation of Fuel Injection
and Flame Stabilization in Liquid Hydrocarbon - Fueled Supersonic
Combustion", in Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion
Conf., AIAA-2000-3581, Huntsville, Alabama, USA, July 2000
[36] G. Yu, J.G. Li, X.Y. Chang, L.H. Chen, C.J. Sung, "Investigation on
Combustion Characteristics of Kerosene Hydrogen Dual Fuel in a
Supersonic Combustor", in Proc.36th Joint Propulsion Specialists
Meeting, AIAA-2000-3620, 2000
[37] W.A. Sirignano, D. Dunn-Rankin, F. Liu, B. Colcord, S. Puranam,
"Turbine Burners: Flameholding in Accelerating Flow", in Proc. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, AIAA 2009
- 5410, Denver, Colorado, USA, August 2009
[38] D.T. Shouse, R.C. Hendricks, D.L. Burrus, W.M. Roquemore, R.C.
Ryder, B.S. Duncan, N.S. Liu, A. Brankovic, J.A. Hendricks, J.R.
Gallagher, "Experimental and Computational Study of Trapped Vortex
Combustor Sector Rig with Tri-pass Diffuser". NASA Report, Glenn
Research Center, 2004
[39] A. Lapsa, J.A. Dahm, "Experimental Study on the Effects of Large
Centrifugal Forces on Step Stabilized Flames", in Proc. 5th US
Combustion Meeting, San Diego, California, USA, March 2007
[40] J. Zelina, D.T. Shouse, G.J. Sturgess, W.M. Roquemore, "Emissions
Reduction Technologies for Military Gas Turbine Engines", J. Prop.
Power, vol. 21, no. 2, 2004
[41] R.S. Bunker, "Integration of New Aero-thermal and Combustion
Technologies with Long Term Design Philosophies for Gas Turbine
Engine", in Proc. US Ukrainian Workshop on Innovative Combustion
and Aerothermal Technologies in Energy and Power Systems, Kiev,
Ukraine, May 2001
[42] C. Stone, S. Menon, "Simulation of Fuel / Air Mixing and Combustion
in a Trapped Vortex Combustor", in Proc. 38th AIAA Aerospace
Sciences Meeting and Exhibit, AIAA-2000-0478, Reno, Nevada, USA,
2000
[43] J. Zelina, "Numerical Studies on Cavity Inside Cavity Supported in Ultra
Compact Combustors", in Proc. ASME Turbo 2008, Berlin, Germany,
June 2008
[44] D.T. Shouse, J. Zelina, R.D. Hancock, "Operability and Efficiency
Performance of Ultra-compact, High Gravity (g) Combustor Concepts",
in Proc. ASME Turbo 2006, Barcelona, Spain, May 2006
[45] T.E. Lippert, R.A. Newby, D.M. Bachovchin, "Gas Turbine Reheat
using In-situ Combustion", Topical Report: Task 4. Conceptual Design
and Development Plan., 2004
[46] T.E. Lippert, R.A. Newby, D.M. Bachovchin, "Gas Turbine Reheat
using In-situ Combustion", Topical Report: Task 4. Conceptual Design
and Development Plan., 2004
[47] European Commission, Flightpath 2050 Europe’s Vision for Aviation,
Luxembourg: Publications Office of the European Union, 2011
[48] V. Pimnsner - "Motoare aeroreactoare. Vol. I" Editura Didactica si
Pedagogica, Bucuresti, 1983
[49] Klimov Corporation, “Motorul de aviatie turbopropulsor TV2-117A si
reductorul VR-8”, Ministerul Transporturilor si Telecomunicatiilor,
Bucuresti, 1973
[50] V. Stanciu - "Motoare aeroreactoare (Indrumar de anteproiectare)".
Institutul Politehnic Bucuresti. Facultatea de Aeronave. Bucuresti,
Romania, 1992