The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite

The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000oC and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated. The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.




References:
[1] Global Industry Analysts, Inc. Report
http://www.prnewswire.com/news-releases/global-market-for-magneticmaterials-
to-reach-33-billion-by-2018-developing-countries-to-drivehigh-
performance-alloys-metal-finishing-chemicals-to-reach-85-bn-
177729081.html.
[2] Global Industry Analysts, Inc. Report.
http://www.prweb.com/releases/magnetic/materials/prweb4688474.htm
[3] Oliver Gutfl eisch, Matthew A. Willard , Ekkes Brück, Christina H.
Chen, S. G. Sankar, and J. Ping Liu, Adv. Mater., vol. 23 (2011) 821–
842.
[4] US Magnetic Materials Association,
http://www.usmagnetmaterials.com/documents/usmma-presentationgeneral-
5-08.ppt, (accessed September 2010).
[5] Yang Luo , Proc. 20 th Int. Workshop on Rare Earth Permanent Magnets
And Their Applications, (Ed: D. Niarchos), 2008, 27.
[6] R. Valenzuela, Magnetic Ceramics, Cambridge University Press, New
York, 1994.
[7] K.H.J. Buschow, F.R. De Boer, Physics of Magnetism and Magnetic
Materials, Kluwer Academic, Plenum Publishers, London, 2003.
[8] A. Rafferty, T. Prescott, D. Brabazon, Sintering behaviour of cobalt
ferrite ceramic, Ceramics International 34 (2008) 15–21.
[9] Sukhleen Bindra Narang and I. S. Hudiara, Journal of Ceramic
Processing Research, vol. 7, No. 2, (2006) 113-116.
[10] J.F. Wang, C.B. Ponton, I.R. Harris, J. Magn. Magn. Mater. 298 (2006)
122.
[11] A. Collomb, B. Lambert Andron, J.X. Boucherle, D. Samaras, Phys.
Stat. sol. (A) 96 (1986) 385.
[12] A. Ataie and S. Heshmati Manesh, J. Eur. Ceram. Soc., vol. 21 (2001)
1951.
[13] D. H. Chen and Y. Y. Chen, Mater. Res. Bull., vol. 37 (2002) 801.
[14] Z.F. Zi a,b,c, Y.P. Sun a,b,_, X.B. Zhu a,b, Z.R. Yang a,b, J.M. dai a,b,
W.H. Song, Journal of Magnetism and Magnetic Materials 320 (2008)
2746– 2751.
[15] J.M.D. Coey, J. Alloys Compd. 326 (2001) 2.
[16] P.E. Kazin, L.A. Trusov, D.D. Zaitsev, Yu.D. Tretyakov, M. Jansen, J.
Magn. Magn. Mater. 320 (2008) 1068.
[17] A. Morisako, T. Naka, K. Ito, A. Takizawa, M. Matsumoto, K.Y. Hong,
J. Magn. Magn. Mater. 242 (2002) 304.
[18] Muhammad Javed Iqbal, Muhammad Naeem Ashiq, Pablo Hernandez-
Gomez, Jose Maria Munoz, J. Magn. Magn. Mater. 320 (2008) 881
[19] Y. Wu, Z.W. Li, L. Chen, S.J. Wang, C.K. Ong, J. Appl. Phys. 95 (2004)
8.
[20] P.C.A. Brito, R.F. Gomes, J.G.S. Duqueb, M.A. Mace do, Physica B 384
(2006) 91.
[21] Ali Ghasemi, Akimitsu Morisako, J. Magn. Magn. Mater. 320 (2008)
1167.
[22] H. How, X. Zuo, C.V. Wave, IEEE Trans. Magn. 41 (2005) 2349.
[23] Z.B. Guo, W.P. Ding, W. Zhong, J.R. Zang, Y.W. Do, J. Magn. Magn.
Mater. 175 (1997) 333.
[24] W.A. Kaczmarek, B. Idzikowski, K.H. Muller, J. Magn. Magn. Mater.
177 (1998) 921.
[25] S.V. Ketov, Yu.D. Yagodkin, A.L. Lebed, Yu.V. Chernopyatova, K.
Khlopkov, J. Magn. Magn. Mater. 300 (2006) e479.
[26] L. Qiao, L.H. You, J.W. Zheng, L.Q. Jiang, J.W. Sheng, J. Magn. Magn.
Mater. 318 (2007) 74.
[27] V.V. Pankov,M. Pernet, P. Germi, P. Mollard, J.Magn.Magn.Mater. 120
(1993) 69.
[28] Wandee Onreabroy a,*, Komane Papato a, Gobwute Rujijanagul b,
Kamonpan Pengpat b, Tawee Tunkasiri b, Ceramics International 38S
(2012) S415–S419.