Temperature Effect on the Mechanical Properties of Pd3Rh and PdRh3 Ordered Alloys

The aim of this research was to calculate the mechanical properties of Pd3Rh and PdRh3 ordered alloys. The molecular dynamics (MD) simulation technique was used to obtain temperature dependence of the energy, the Yong modulus, the shear modulus, the bulk modulus, Poisson-s ratio and the elastic stiffness constants at the isobaric-isothermal (NPT) ensemble in the range of 100-325 K. The interatomic potential energy and force on atoms were calculated by Quantum Sutton-Chen (Q-SC) many body potential. Our MD simulation results show the effect of temperature on the cohesive energy and mechanical properties of Pd3Rh as well as PdRh3 alloys. Our computed results show good agreement with the experimental results where they have been available.




References:
[1] H. H. Kart, M. Tomak, M. Uludogan, et al, International journal of
modern physics B. 18, 2004, pp. 2257-2269.
[2] S. Ozdemir Kart, M. Tomak, M. Uludogan, and T. Cagin, J. Noncryst.
Sol. 337, 2004, pp. 101-108.
[3] H. H. Kart, M. Tomak, M. Uludogan, T. Cag?n, Turk. J. Phys. 30, 2006,
pp. 311-317.
[4] J. Davoodi, M. Ahmadi, H. Rafii-Tabar, Material science and
engineering A 527, 2010, pp. 4008-4013.
[5] H. H. Kart, M. Tomak, M. Uludogan, T. Cag?n, Comput. Mater. Sci. 32,
2005, pp. 107-117.
[6] J. Davoodi, M. Ahmadi, Computational materials science 49, 2010, pp.
21-24.
[7] S. Ozdemir Kart, M. Tomak, M. Uludogan, and T. Cagin, J. Noncryst.
Sol. 337, 2004, pp. 101-108.
[8] H. H. Kart, M. Tomak, M. Uludogan, T. Cag?n, Materials science and
engineering A-Structural materials properties microstructure and
processing 435, 2006, pp. 736-744.
[9] J.C. Barton, J.A.S. Green, F.A. Lewis, Trans. Faraday Soc. 62, 1966, pp.
960.
[10] F.A. Lewis, W.D. McFall, T.C. Witherspoon, Z. Phys. Chem. N. F. 84,
1973, pp. 31.
[11] Y. Sakamoto, Y. Haraguchi, M. Ura, F.L. Chen, Ber. Bunsenges Phys.
Chem. 98, 1994, pp. 964.
[12] Y. Sakamoto, K. Kuruma, Y. Naritomi, J. Appl. Electrochem. 24, 1994,
pp. 38.
[13] J. Luyten, J. De Keyzer, P. Wollants, C. Creemers, CALPHAD:
Computer Coupling of Phase Diagrams and Thermochemistry 33, 2009,
pp. 370-376.
[14] B. Baranowski, S. Majchrzak, T.B. Flanagan, J. Phys. Chem. 77, 1973,
pp. 35.
[15] Y. Sakamoto, F.L. Chen, M. Ura, T.B. Flanagan, Ber. Bunsenges Phys.
Chem. 99, 1995, pp. 807.
[16] G. Mengoli, M. Fabrizio, C. Manduchi, E. Milli, G. Zannoni, J.
Electroanal. Chem. 390, 1995, pp. 135.
[17] A.K.M. Fazle Kibria, T. Kubota, A. Kagawa, Y. Sakamoto, Int. J.
Hydrogen Energy 24, 1999, pp. 747.
[18] A.K.M. Fazle Kibria, Y. Sakamoto, Int. J. Hydrogen Energy 25, 2000,
pp. 853.
[19] T. Saha and A. Mookerjee, J. Phys.: Condens. Matter 9, 1997, pp. 2179-
2186.
[20] M. Hara, L. Wan, M. Matsuyama, K. Watanabe, Journal of Alloys and
Compounds 428, 2007, pp. 252-255.
[21] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola,
and J. R. Haak, J. Chem. Phys. 81, 1984, pp. 3684-3690.
[22] J.M. Haile, Molecular Dynamics Simulation, John Wiley & Sons, New
York, 1992.
[23] H. Rafii-Tabar, A. P. Sutton, Phil. Mag. Lett. 63, 1991, pp. 217-224.
[24] Y. Qi, T. Cag?n, Y. Kimura and W.A. Goddard, Phys. Rev. B 59, 1999,
pp. 3527-3533.
[25] W. G. Hoover, Canonical dynamics: Phys. Rev. A 31, 1985, pp. 1695-
1697.
[26] S. Nose, J. Chem. Phys. 81, 1984, pp. 511-519.
[27] A.P. Sutton, J.B. Pethica, H. Rafii-Tabar, J.A. Nieminen, in: D.G.
Pettifor, A.H. Cottrell (Eds.), Electron Theory in Alloy Design, Institute
of Materials, London, 1994, 191.
[28] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola,
and J. R. Haak, J. Chem. Phys. 81, 1984, pp. 3684-3690.
[29] C. Kittel, Introduction to Solid State Physics, eighth ed., John Wiley &
Sons, New York, 2005.
[30] A. P. Sutton and J. Chen, Phil. Mag. Lett. 61, 1990, pp. 139-164.
[31] J.F. Nye, Propriétés Physiques des Matériaux, Dunod, 1961.
[32] T.H. Courtney, Mechanical behavior of metals, second ed., McGraw-
Hill, New York, 2000.