Supramolecular Cocrystal of 2-Amino-4-Chloro-6- Methylpyrimidine with 4-Methylbenzoic Acid: Synthesis, Structural Determinations and Quantum Chemical Investigations

The 1:1 cocrystal of 2-amino-4-chloro-6-
methylpyrimidine (2A4C6MP) with 4-methylbenzoic acid (4MBA)
(I) has been prepared by slow evaporation method in methanol,
which was crystallized in monoclinic C2/c space group, Z = 8, and a
= 28.431 (2) Å, b = 7.3098 (5) Å, c = 14.2622 (10) Å and β =
109.618 (3)°. The presence of unionized –COOH functional group in
cocrystal I was identified both by spectral methods (1H and 13C
NMR, FTIR) and X-ray diffraction structural analysis. The
2A4C6MP molecule interact with the carboxylic group of the
respective 4MBA molecule through N—H⋯O and O—H⋯N
hydrogen bonds, forming a cyclic hydrogen–bonded motif R2
2(8).
The crystal structure was stabilized by Npyrimidine—H⋯O=C and
C=O—H⋯Npyrimidine types hydrogen bonding interactions.
Theoretical investigations have been computed by HF and density
function (B3LYP) method with 6–311+G (d,p)basis set. The
vibrational frequencies together with 1H and 13C NMR chemical
shifts have been calculated on the fully optimized geometry of
cocrystal I. Theoretical calculations are in good agreement with the
experimental results. Solvent–free formation of this cocrystal I is
confirmed by powder X-ray diffraction analysis.





References:
[1] C. Janiak, “A critical account on π-π stacking in metal complexes with
aromatic nitrogen-containing ligands,” J. Chem. Soc. Dalton. Trans.,
pp.3885–3896, 2000.
[2] G. R. Desiraju, “C–HO and other weak hydrogen bond. From crystal
engineering to virtual screenin,” Chem. Commun., vol. 24, pp.2995–
3001, 2005.
[3] Ö. Almarsson, M. J. Zaworotko, “Crystal engineering of the
composition of pharmaceutical phases. Do pharmaceutical cocrystal
represent a new path to improved medicines?,” Chem. Commun.,
pp.1889–1896, 2004.
[4] S. L. Childs, L. J. Chyall, J. T. Dunlap, V. N. Smolenskaya, B. C.
Stahly, B. C. Stahly. “Crystal engnineering approach to forming
cocrystals of amine hydrochloric with organic acids. Molecular
complexes of fluoxetine hydrochloride with benzoic, succinic and
fumaric acid,” J. Am. Chem. Soc., vol.126 (41), pp.13335–13342, 2004.
[5] A. T. M. Serajuddin, “Salt formation to improve drug solubility,” Adv.
Drug. Deliv. Rev., vol.59, pp.603–616, 2007.
[6] S. Ebenezer, P. T. Muthiah and R. J. Butcher, “Design of series of
isostructural co-crystals with aminopyrimidine: isostructurality through
chloro/methyl exchange and studies on supramolecular architectures,”
Crystal Growth & Design., vol.11, pp.3579–3592, 2011.
[7] L. H. Schmidt, J. Harrison, R. N. Rossan. D. Vaughan, R. Crosby,
“Quantitative aspects of pyrimethamine-sulfonamide synergism,” Am. J.
Trop. Med. Hyg., vol.26, pp.837−849, 1977.
[8] B. L. Vallee, D. S. Auld, “Zinc: biological functions and coordination
motifs,” Acc. Chem. Res., vol.26, pp.543−551, 1993.
[9] B. R. Baker, D. V. Santi. “Analogs of tetrahydrofolic acid XXIV.
Further observations on the mode of pyrimidyl binding to dihydrofolic
reductase and thymidylate synthetase by the 2-amino-5-(3-
anilinopropyl)-6-methyl-4-pyrimidinol type of inhibitor,” J. Pharm. Sci.,
vol.54, pp.1252−1257, 1965.
[10] K. Thanigaimani, N. C. Khalib, E. Temel, S. Arshad and I. A. Razak.
“New supramolecular cocrystal of 2-amino-5-chloropyridine with 3-
methylbenzoic acids: Syntheses, structural characterization, hirshfeld
surfaces and quantum chemical investigations,” Journal of molecular
structure, vol.1099, pp. 246–256, 2015.
[11] M. G. Takwale and L. M. Pant. “The structure of p-toluic acid,”Acta
Cryst. B27, pp. 1152–1158, 1971.
[12] M. Orio, D. A. Pantazis, F. Nesse, “Density functional theory,”
Photosynthesis. Res., vol.102, pp.443–453, 2009.
[13] Bruker. SADABS, APEX2 and SAINT. Bruker AXS Inc.: Madison,
Wisconsin, USA, 2009.
[14] G. M. Sheldrick, “A Short history of SHELX,” Acta Cryst., A64,
pp.112–122, 2008.
[15] A. L. Spek, “Structure validation in chemical crystallography,” Acta
Cryst., D65, pp.148–155, 2009.
[16] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery,
Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.
Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.
M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A.
D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D.
J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[17] J. P. Merrick, D. Moran, L. Radom, “An evaluation of harmonic
vibrational frequency scale factors,” J. Phys. Chem A., vol.111,
pp.11683–11700, 2007.
[18] M. Atiş, F. Karipchi, B. Sariboğa, M. Taş, H. Çelik, “Structural,
antimicrobial and computational characterization of 1-benzoyl-3-(5-
chloro-2-hydroxyphenyl) thiourea,” Spectrochimica Acta A., vol. 98,
pp.290–301, 2012.
[19] R. Dennington, T. Keith, J. Millam, “GaussView Version 5,” Semichem
Inc., Shawnee Mission KS, 2009.
[20] F. H. Allen, “The Cambridge structural database: a quarter of a million
crystal structures and rising,” Acta Cryst., B58, pp.380–288, 2002.
[21] C. A. Coulson, “Bond Angles in Nitrogen-containing heterocyclic
molecules,” J. Amer. Chem. Soc., vol.85, pp. 5893–5896, 1963.
[22] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R.
Taylor, “Tables of bond lengths determined by X-ray and neutron
diffraction. Part1. Bond lengths in organic compound,” J. Chem. Soc.,
Perkin Trans., vol.2, pp.S1–19, 1987.
[23] J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, “Pattern in hydrogen
bonding: functionality and graph set analysis in crystal,” Angew. Chem.
Int. Ed. Engl., vol.34, pp.1555–1573, 1995.
[24] F. H. Allen, P. R. Raithby, G. P. Shields, R. Taylor, “Probabilities of
formation of bimolecular cyclic hydrogen-bonded motifs in organic
crystal structures: a systematic database analysis,” Chem. Commun.,
pp.1043-1444, 1998.
[25] K. Thanigaimani, N. C. Khalib, S. Arshad, I. A. Razak, “4-chloro-6-
methoxypyrimidine-2-amine-succinic acid (2/1),” Acta Cryst., E68,
pp.o3343, 2012.
[26] K. Thanigaimani, N. C. Khalib, S. Arshad, I. A. Razak, “2, 6-diamino-4-
chloropyrimidine-benzoic acid (1/1),” Acta Cryst., E68, pp.o3442–
o3443, 2012.
[27] G. S. S. Kumar, A. A. M. Prabhu, N. Bhuvanesh, X. A. V. Ronica, S.
Kumaresan, “Molecular structure investigation of organic cocrystals of
1,10-phenanthroline-5,6-dione with aryloxyacetic acid: A combined
experimental and theoretical study,” Spectrochimica Acta A., vol.132,
pp.465–476, 2014.
[28] H. A. Dabbagh, A. Teimouri, A. N. Chermahini, M. Shahraki, “DFT and
ab initio study of structure of dyes derived from 2-hydroxy and 2, 4-
dihydroxy benzoic acids,” Spectrochimica Acta A., vol.69, pp.449–459,
2008.
[29] S. Ramalingam, S. Periandy, S. Mohan, “Vibrational spectroscopy
(FTIR and FTRaman) investigation using ab initio (HF) and DFT
(B3LYP and B3PW91) analysis on the structure of 2-amino pyridine,”
Spectrochimica Acta A., vol.77, pp.73–81, 2010.
[30] T. Javavarthanan, N. Sundarageranesan, M. Karabacak, M. Cinar, M.
Kurt, “Vibrational spectra, UV and NMR, first order hyperpolarizability
and HOMO–LUMO analysis of 2-amino-4-chloro-6-methylpyrimidine,”
Spectrochimica Acta A., vol.97, pp.811–824, 2012.
[31] N. Sundaraganesan, B. D. Joshua, C. Meganthan, S. Sebastian,
“Vibrational spectroscopic studies supported by HF/DFT calculations of
2, 4, 6-triaminopyrimidine,” Ind. J. Chem., vol.47, pp.821–829, 2008. [32] D. Sajan, I. Hubert Joe, V. S. Jayakumar, “NIR‐FT Raman, FT‐IR and
surface‐enhanced Raman scattering spectra of organic nonlinear optic
material: p‐hydroxy acetophenone,” J. Raman Spectrosc., vol. 37,
pp.508–519, 2006.
[33] A. V. Trask, J. an de Streek, W. D. Samuel Motherwell, W. Jones,
“Achieving polymorphic and stoichiometric diversity in cocrystal
formation: Importance of solid-state grinding, powder X-ray structure
determination, and seeding,” Cryst. Growth. Des., vol.5(6), pp.2233–
2241, 2005.
[34] D. R. Weyna, T. R. Shattock, P. Vishweshwar, M. Zaworotko,
“Synthesis and structural characterization of cocrystals and
pharmaceutical cocrystals: mechanochemistry vs slow evaporation from
solution,” Cryst Growth Des., vol.9(2), pp.1106–1123, 2009
[35] B. Sarma, K. Naba. Nath, R. Balakrishna, Bhogala, and N. Ashwini,
“Synthon Competition and Cooperation in Molecular Salts of
Hydroxybenzoic Acids and Aminopyridines,” Growth & Design., vol.9
(3), pp.1546–155, 2009.
[36] G. Portalone, M. Colapietro, “Solid–phase molecular recognition of
cytosine based on proton–transfer reaction,” J. Chem Cryst., vol.39,
pp.193–200, 2009.