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 
Abstract—The 1:1 cocrystal of 2-amino-4-chloro-6-

methylpyrimidine (2A4C6MP) with 4-methylbenzoic acid (4MBA) 
(I) has been prepared by slow evaporation method in methanol, 
which was crystallized in monoclinic C2/c space group, Z = 8, and a 
= 28.431 (2) Å, b = 7.3098 (5) Å, c = 14.2622 (10) Å and β = 
109.618 (3)°. The presence of unionized –COOH functional group in 
cocrystal I was identified both by spectral methods (1H and 13C 
NMR, FTIR) and X-ray diffraction structural analysis. The 
2A4C6MP molecule interact with the carboxylic group of the 
respective 4MBA molecule through N—H⋯O and O—H⋯N 
hydrogen bonds, forming a cyclic hydrogen–bonded motif R2

2(8). 
The crystal structure was stabilized by Npyrimidine—H⋯O=C and 
C=O—H⋯Npyrimidine types hydrogen bonding interactions. 
Theoretical investigations have been computed by HF and density 
function (B3LYP) method with 6–311+G (d,p)basis set. The 
vibrational frequencies together with 1H and 13C NMR chemical 
shifts have been calculated on the fully optimized geometry of 
cocrystal I. Theoretical calculations are in good agreement with the 
experimental results. Solvent–free formation of this cocrystal I is 
confirmed by powder X-ray diffraction analysis. 
 

Keywords—Supramolecular Cocrystal, 2-amino-4-chloro-6-
methylpyrimidine, Hartree-Fock and DFT Studies, Spectroscopic 
Analysis.  

I. INTRODUCTION 

UPRAMOLECULAR interactions have involved 
significant attentions for the last several years since the 

usage of the intermolecular non-covalent interactions is based 
on the design and development of functional materials [1], [2]. 
Intermolecular interactions can be used as a key molecular 
recognition element in the designing of crystalline multiple 
component system especially for cocrystals structures. 
Recently, active pharmaceutical ingredient (APIs) was 
reported to exist in cocrystal formation [3], [4]. A cocrystals 
formation is often used in order to modify the properties of the 
compounds in pharmaceuticals fields such as improving the 
stability, solubility, melting point and reducing the 
hygroscopicity of the drug product [5].  

Pyrimidine and aminopyrimidine derivatives are 
biologically important compounds and they apparent 
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themselves in nature as components of nucleic acid and drug 
[6], [7]. Their interactions with carboxylic acids are of greatest 
consequence since they are involved in protein-nucleic acid 
recognition and drug-protein recognition processes where the 
pyrimidine moiety of a drug forms hydrogen bonding with the 
carboxyl group of the protein [8], [9]. 

Several cocrystals of 2-amino-4-chloro-6-methylpyrimidine 
(2A4C6MP) with several of carboxylic acid have been 
reported from [6]. In addition, methylbenzoic acid is used as 
an intermediate for polymer stabilizers, pesticides and light 
sensitive compound [10]. The crystal structure of 4-
methylbenzoic acid (4MBA) [11] has been reported.  

The use of computational and theoretical studies using Ab-
initio (HF) and density functional theory (DFT) has provided a 
very useful tool for understanding molecular properties and 
for explaining the behavior of atoms in molecules. The 
calculation of a broad range of molecular properties with HF 
and DFT enables a close connection between theory and 
experimental, and often leads the important clues about 
geometric, electronic, and spectroscopic properties of the 
system being studied [12]. 

In the present study, preparation, structural and 
characterization of cocrystal I were reported by using PXRD, 
FTIR, 1H and 13C NMR spectroscopes. The structural 
optimized calculation using hatree-fock (HF) and density 
functional theory (DFT) method at the basis set levels of 6–
311+G (d,p) provide the results of geometrical parameters, 
fundamental frequencies, GIAO 1H and 13C NMR chemical 
shift values. 

II. EXPERIMENTAL 

A. General Remarks 

All chemicals are reagent grade and used as commercially 
purchased without further purification. FTIR spectra were 
recorded on a PerkinElmer 2000 Spectrum in the form of KBr 
pellets. 1H-NMR and 13C-NMR spectra were recorded at 500 
MHz, in DMSO-d6, on Bruker 500MHz Avance III 
spectrometer. The chemical shifts are reported in parts per 
million (ppm) downfield from internal tetramethylsilane 
(TMS) (chemical shift in δ values). PXRD diffractogram at 
25˚C provided another piece of information for the 
identification and crystallinity of starting materials and 
cocrystal. PXRD diffractogram was collected by BRUKER 
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1.312 Å and 1.196 Å for HF and 1.329 Å and 1.224 Å for 
B3LYP method using 6–311+G (d,p) basis set, respectively. 
The experimental C—O bond lengths in the carboxylic acid 
group are intermediate between single Csp2—O (1.308–1.320 
Å) and double Csp2=O bond values (1.214–1.224 Å) [22] 
which clearly distinguishes the neutral molecule of the acid. 
The theoretical B3LYP method values correlate well 
compared with the experimental results. 

In the 2A4C6MP ring, the bond angles of N1—C1—N3 
was obtained to be 124.56 (18)°in X–ray while these bond 
angles have been calculated at 125.05° and 124.62° with HF 
and B3LYP method using 6–311+G (d,p) basis set, 
respectively. 

Notable conformational differences and observed in the 
orientation of the carboxylic group of the 4MBA molecule, 
when the x–ray structure is compared with the optimized 
structure. The orientation of the carboxylic group from the 
experimental data is defined by torsion angles of O1—C6—
C7—C12 [−174.2 (2)°], O2—C6—C7—C12 [4.5 (4)°], O1—
C6—C7—C8 [3.1(3)°] and O2—C6—C7—C8 [−178.3 (2)°]. 
The corresponding torsion angles have been calculated at 
179.93624°, −0.08193°, 0.09031° and −179.92786° for HF 
and 179.99208°, −0.05859°, 0.14675° and −179.90392° for 
B3LYP method using 6–311+G (d,p) basis set, respectively. 
The angle differences of 2–6° are due to the effect of the 
involvement of the carboxylic group in intermolecular 
interactions observed in the crystal structure. 

V. VIBRATIONAL ANALYSIS 

The harmonic vibrational frequencies were calculated for 
[(2A4C6MP) (4MBA)] at HF and B3LYP levels using the 
triple split valence basis set along with diffuse and 
polarization function, 6–311+G (d,p). The selected 
experimental and theoretical vibrational frequencies with 
probable vibrational assignments are given in Table IV. The 
bands observed in the measured region 4000–400 cm-1 arise 
from the internal vibrations of the amino groups, pyrimidine 
ring and 4-methylbenzoic acid. The calculated (HF and DFT) 
and experimental vibrational frequencies are comparable to 
each other where the correlation values of 0.98 for HF and 
0.99 for DFT are obtained. According to these results, there is 
a good correlation between the theoretical and experimental 
vibrational frequencies.  

The band observed in the 1700–1800 cm−1 region due to the 
C=O stretching vibration is one of the characteristic features 
of the carboxylic group. The band appears at 1700 cm-1 is 
assigned as C=O stretching vibration in FTIR spectrum. 
Meanwhile, the calculated C=O frequencies are found at 1672 
cm-1 from HF method and 1746 cm-1 with B3LYP method. 
The change in carbonyl frequencies is due to the carbonyl 
group involvement in the hydrogen bond formation and is also 
an indicator of the formation of a cocrystal [27]. 

The hydroxyl vibrations are likely to be the most sensitive 
to the environment, so they show pronounced shifts in the 
spectra of the hydrogen–bonded species. The non–hydrogen 
bonded or a free hydroxyl group absorb strongly in the 3550 – 
3700 cm-1 region [28]. The O—H stretching vibration is 

observed at 3128 cm-1, while it is calculated at 2875 cm-1 for 
HF and 3383 cm-1 for DFT, respectively. The reduction in the 
O—H stretching indicates the presence of hydrogen bonding 
within the cocrystal.  

The molecule under investigation possesses one NH2 group 
and hence one can be expect one being asymmetric and other 
is symmetric N—H vibrations. It is stated that in N—H 
stretching vibrations (amines group) occur in the region 3500–
3300 cm-1 [29]. The FTIR spectrum of the title 
aminopyrimidine compound contains intense broad bands in 
the range of the νN—H vibrations. The NH2 asymmetric and 
symmetric stretching vibration in FTIR experimental spectrum 
found at 3334 and 3206 cm-1. These stretching have been 
calculated at 3579 and 3289 cm-1 with HF method and 3574 
and 3411 cm-1 with B3LYP method using 6–311+G (d,p) basis 
set. These amino vibrations values in good agreement for both 
experimental and theoretical methods. 

The aliphatic C—Cl bands absorb at range 830–560 cm-1 
and the substitution more than one chlorine on a carbon atom 
raises the C—Cl wavenumber [30]. In this cocrystal I, the C—
Cl stretching frequency appears in FTIR at 474 cm-1. It shows 
good correlation when compared with calculations frequencies 
which is the HF calculations gives 409 cm-1 and the DFT 
calculations gives 471 cm-1. 

For the aromatic benzene ring, in our title molecule the 
C=C stretching appears at 1605 and 1454 cm-1 while the 
calculations values are observed at 1556 and 1535 cm-1 for HF 
and 1585 and 1582 cm-1 for B3LYP methods respectively. It 
shows that these values are comparable with the ranges at 
1600 cm-1 and 1475 cm-1 for aromatic ring vibrations [29]. 
Primary aromatic amines with nitrogen directly on the ring 
absorb at 1430-1575 cm-1 due to stretching of the phenyl 
carbon nitrogen bond [31]. For our title molecule, the vC—N 
appears at 1562.5 cm-1, while the HF calculations give the 
vC—N at 1564 cm-1 and 1596 cm-1 for DFT calculations.  

The title cocrystal I [(2A4C6MP) (4MBA)] possesses a 
CH3 group in the sixth position of aminopyrimidine and in the 
forth position of carboxylic acid. The methyl stretching 
vibrations is expected around 2980 cm-1 and 2870 cm-1 [32]. 
In the present studies, the stretching aromatic C–CH3 group 
vibrations was noted at 2973 and 2818 cm-1 which are in 
comparable with theoretical results of 3030 and 3008 cm-1 for 
HF and 2961 and 2942 cm-1 for B3LYP method using 6–
311+G (d,p) basis set. The slight differences of the vibration 
frequencies between experimental and calculated values may 
be due to the hydrogen atom of the methyl group of 4MBA 
and the oxygen atom of 2A4C6MP. 

VI. NMR ANALYSIS 

The 1H and 13C NMR spectra of cocrystal were carried out 
in DMSO–d6 at room temperature using TMS as internal 
standard. The optimized structure of [(2A4C6MP) (4MBA)] is 
used to calculate the NMR spectra at the HF and DFT 
(B3LYP) methods with 6–311+G (d,p) level using the GIAO 
method. The results of the calculated values shifted to higher 
values of chemical shift and further corrected with the TMS 
isotropic chemical shift values. The theoretical 1H and 13C 
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NMR chemical shifts of [(2A4C6MP) (4MBA)] have been 
compared with the experimental data as shown in Table V.  

In the experimental 1H NMR spectrum, the hydrogen of the 
carboxylic acid (COOH) is observed at 12.796 ppm (11.467 
ppm in HF and 14.47 in DFT spectrum) and indicates that a 
hydrogen bond is confirmed the formation of cocrystal I. The 
1H NMR spectra show a broad singlet peak at 7.013 ppm 
which due to protons in NH2 (aminopyrimidine) group 
attached to carbon atom while this signal is observed 
computationally at 7.8549 (H1N2), 4.7557 (H2N2) ppm with 
HF and 9.6058 (H1N2), 4.8957 (H2N2) ppm with B3LYP 
method. The discrepancies between the experimental and 
theoretical values are due to the formation of intermolecular 
N2—H2N2···O2 hydrogen bonding (Table III) observed in 
the crystal packing. The signals at 6.565−7.851 ppm range are 
typical for hydrogen atoms attached to aromatic ring. The 
presence of the methyl group in 2A4C6MP and 4MBA gave 
single peaks at δ values of 2.37 and 2.22 ppm and the values 
of the calculated chemical shift of methyl group were also in 
same range of 2.72–2.01 ppm for HF and 2.86–1.91 ppm for 
B3LYP method using 6–311+G (d,p) basis set.  

The 13C NMR spectrum given in Table V clearly shows the 
cocrystal of [(2A4C6MP) (4MBA)]. 4MBA gives a single 
signal at 167.276 ppm for COOH (C6) carbon atom. This 
signals has been calculated at 171.682 ppm for HF method and 
176.55 ppm with B3LYP method using 6–311+G (d,p) basis 
set, respectively. The C atoms (C5 and C13) of methyl groups 
are observed at 23.18 and 21.08 ppm. These peaks 
theoretically calculated at 23.806 and 21.735 ppm with HF 
and at 24.563 and 23.875 ppm with B3LYP method using 6–
311+G (d,p) basis set. As can be seen from Table V, the 
theoretical 1H and 13C NMR chemical shift values for the title 
compound were in the normal range and in a good agreement 
with the experimental 1H and 13C NMR chemical shift data.  

VII. POWDER XRD ANALYSIS 

Powder XRD is a useful method for fast identification of 
the new phases [33]. A different PXRD pattern for the 
cocrystal from those of the individual components confirms 
the formation of a new phase.  

The PXRD pattern of 2A4C6MP shows some 
characteristics peaks at 9.1°, 12.1°, 16.9°, 18.3°, 24.3°, 24.7°, 
25.4°, 27.6°, 28.9°, 29.7°, 33.6°, 34.9°, 35.5°, 36.9°, 39.0°, 
40.0°, 42.3° and 43.0° and 43.8° (2θ) while the PXRD pattern 
of 4MBA shows characteristics peaks at 12.5°, 13.7°, 14.5°, 
15.4°, 17.2°, 22.6°, 24.9°, 26.5°, 27.8°, 29.4°, 30.6°, 31.3°, 
32.4°, 33.0°, 35.0°, 36.4°, 36.8°, 39.9°, 40.8°and 42.4° (2θ). 

The PXRD pattern of cocrystal I shows appearance of new 
peaks at 6.6°, 12.5°, 13.6°, 14.6°, 15.2°, 15.7°, 17.3°, 18.2°, 
18.9°, 19.8°, 20.5°, 21.2°, 21.6°, 22.2°, 23.7°, 24.3°, 25.2°, 
26.4°, 27.5°, 28.3°, 29.5°, 30.7°, 31.5°, 32.4°, 32.9°, 33.9°, 
38.9°, 41.0° and 41.9° (2θ). Besides this, characteristics peaks 
of 2A4C6MP at (9.1°, 16.9°, 28.9°, 34.9°, 35.5°, 36.6°, 43.0° 

and 43.8°) and of (4MBA) at (24.9°, 26.5°, 35.0°, 36.4°, 36.8° 
and 42.4°) have disappeared in the PXRD pattern of cocrystal 
I. From the above results, it is clear that there is transformation 
in the crystalline lattices of [(2A4C6MP) (4MBA)] and new 
phases of cocrystal I have been formed.  

VIII.  PREDICTION OF COCRYSTALS/SALTS BY PKA VALUES 

The significant of pKa can act as a predictor either 
cocrystals or salts for carboxylic acids and pyrimidines [34]. 
ΔpKa of carboxylic acid vs. Narom moieties can be used to 
predict whether or not proton–transfer will occur [ΔpKa = pKa 
2A4C6MP – pKa (4MBA)]. Generally, a sufficiently large 
ΔpKa value (i.e. greater than 3) should result in a salt [35]. 
With less ΔpKa values, a cocrystal can be predicted, but this 
argument seems inadequate prediction salt or cocrystal 
formation in a solid state if 0< ΔpKa < 3 [36]. In this study, 
the pKa values for 2A4C6MP and 4MBA are 4.16 and 4.26, 
respectively, while ΔpKa values for this acid–base complex 
are –0.1 (Table VI) and noted in the formation of cocrystal.  

IX. CONCLUSION 

In this study, we have synthesized a [(2A4C6MP) (4MBA)] 
cocrystal and characterized by PXRD, spectroscopy (FTIR, 1H 
and 13C NMR) and structural determination (single–crystal X–
ray diffraction) techniques. To support the solid state 
structure, the geometric parameters, vibrational frequencies 
and 1H and 13C NMR chemical shifts of the title cocrystal I 
have been calculated using the HF and B3LYP method with 
6–311+G (d,p) basis sets and compared with the experimental 
findings. The experimental geometric parameters, vibrational 
frequencies and chemical shift values are in a comparable and 
in a good agreement with the experimental findings. The 
discrepancies between the experimental and theoretical 
geometric parameters, IR frequencies, and chemical shift 
values are mainly due to the hydrogen bonding interactions 
since all the hydrogen bound to the nitrogen and oxygen atoms 
are involved in hydrogen bonding in the crystal structure. It 
should be noted that the theoretical calculations refer to the 
molecules and their dimers in their vacuum (gas phases). 
While, the experimental results referring to molecules in 
chemical environment (solid state). Thus, these results have 
differed because the states of the molecules are different. 

SUPPLEMENTARY MATERIALS 

This data (CCDC: 1027017) can be obtained free of charge 
at www.ccdc.cam.ac.uk.conts/retrieving.html/ or from the 
Cambridge Crystallographic Data Centre (CCDC), 12 Union 
Road, Cambridge CB2 IEZ, UK; fax: +44(0) 1223-336033; e-
mail: deposit@ccdc.cam.ac.uk. 
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TABLE II 
THE EXPERIMENTAL AND OPTIMIZED GEOMETRICAL PARAMETERS OF THE TITLE COCRYSTAL I 

Parameters Experimental 
Calculated EXEZIR EXEZOX 

HF 6−311+G(d,p) DFT B3LYP 6−311+G(d,p) [6] [6] 

Bond lengths (Å) 

Cl1—C2 1.725 (2) 1.736 1.758 1.728 (2) 1.729 (2) 

O1—C6 1.308 (3) 1.312 1.329 1.313 (3) 1.311 (2) 
O2—C6 
N1—C1 

1.210 (3) 
1.352 (2) 

1.196 
1.331 

1.224 
1.352 

1.206 (3) 
1.354 (2) 

1.206 (2) 
1.350 (2) 

N1—C4 1.335 (3) 1.328 1.343 1.331 (3) 1.334 (2) 
N2—C1 
N3—C2 

1.328 (3) 
1.314 (3) 

1.334 
1.294 

1.343 
1.308 

1.330 (3) 
1.311 (3) 

1.328 (2) 
1.313 (2) 

N3—C1 1.349 (2) 1.338 1.354 1.347 (2) 1.351 (2) 

C4—C5 1.534 (3) 1.502 1.503 1.536 (3) 1.518 (3) 

C6—C7 1.482 (3) 1.486 1.487 1.489 (3) 1.492 (3) 

C10—C13 1.511 (3) 1.590 1.508 - - 

Bond angles (°) 

C2—N3—C1 115.35 (16) 116.00 116.03 115.44 (16) 115.08 (17) 

C1—N1—C4 117.49 (17) 117.42 117.63 117.22 (17) 117.47 (16) 

N2—C1—N3 117.33 (16) 116.55 117.14 117.65 (17) 117.22 (17) 

N2—C1—N1 118.11 (17) 118.39 118.24 117.61 (18) 117.91 (16) 

N3—C1—N1 124.56 (18) 125.05 124.62 124.74 (18) 124.87 (17) 

N3—C2—C3 124.96 (18) 124.70 124.70 125.07 (19) 125.20 (17) 

N3—C2—Cl1 115.27 (15) 116.48 116.60 115.58 (15) 115.34 (15) 

C3—C2—Cl1 119.77 (16) 118.82 118.69 119.35 (16) 119.46 (15) 

C2—C3—C4 115.96 (19) 114.93 115.54 115.66 (18) 116.09 (18) 

N1—C4—C3 121.63 (18) 121.89 121.47 121.85 (18) 121.26 (18) 

N1—C4—C5 116.96 (18) 116.67 116.96 116.99 (18) 117.38 (17) 

C3—C4—C5 121.41 (19) 121.44 121.57 121.16 (18) 121.36 (18) 

O2—C6—O1 123.3 (2) 122.71 123.19 122.7 (2) 123.42 (18) 

O2—C6—C7 122.5 (2) 123.20 122.76 124.42 (19) 122.98 (17) 

O1—C6—C7 114.19 (19) 114.08 114.06 112.89 (18) 113.59 (16) 

C11—C10—C13 120.8 (2) 120.47 120.79 - - 

C9—C10—C13 121.4 (2) 121.06 120.98 - - 

Torsion angles (°) 

C2—N3—C1—N2 −178.26 (19) 179.99940 179.99135 - - 

C2—N3—C1—N1 2.1 (3) −0.00116 −0.00210 - - 

C4—N1—C1—N2 178.46 (19) −179.99876 −179.98827 - - 

C4—N1—C1—N3 −2.0 (3) 0.00181 0.00511 - - 

C1—N3—C2—C3 −0.5 (3) 0.0000 −0.00150 - - 

C1—N3—C2—Cl1 179.52 (15) 180.000 179.99626 - - 

N3—C2—C3—C4 −1.1 (3) 0.00054 0.00181 - - 

Cl1—C2—C3—C4 178.84 (16) −179.99952 −179.99590 - - 

C1—N1—C4—C3 0.1 (3) −0.00123 −0.00459 - - 

C1—N1—C4—C5 −179.18 (18) 179.9973 179.99215 - - 

C2—C3—C4—N1 1.3 (3) 0.000 0.00141 - - 

C2—C3—C4—C5 −179.45 (19) −179.99876 −179.99519 - - 

O2—C6—C7—C12 4.5 (4) −0.08193 −0.05859 - - 

O1—C6—C7—C12 −174.2 (2) 179.93624 179.99208 - - 

O2—C6—C7—C8 −178.3 (2) −179.92786 −179.90392 - - 

O1—C6—C7—C8 3.1 (3) 0.09031 0.14675 - - 

C8—C9—C10—C13 179.1 (2) 178.86037 178.53684 - - 

C8—C9—C10—C11 −1.1 (4) −0.20813 −0.31171 - - 

C12—C11—C10—C13 −179.2 (3) −178.85728 −178.53662 - - 

C12—C11—C10—C9 0.9 (5) 0.21695 0.31412 - - 

 
 
 
 
 
 
 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:9, No:12, 2015

1357

 

 

TABLE III 
THE HYDROGEN BONDING GEOMETRY FOR TITLE COCRYSTAL I 

D—H···A D—H (Å) H···A(Å) D···A(Å) D—H···A(°) 

N2—H2N2···N3i 0.86 (2) 2.19 (2) 3.045 (2) 173 (3) 

N2—H1N2···O2 0.86 (2) 2.07 (2) 2.919 (3) 168 (2) 

O1—H1O1···N1 0.85 (3) 1.85 (3) 2.694 (2) 169 (3) 

Symmetry codes: (i) −x+1, y, −z+3/2. 
 

TABLE IV 
SELECTED EXPERIMENTAL AND CALCULATED VIBRATIONAL FREQUENCIES OF THE TITLE COCRYSTAL I 

Experimental 
(cm-1) 

Calculated IR (km mol-1) 

Assignmenta HF 6-311+G (d,p) DFT B3LYP 6-311+G (d,p) 

Unscaled Scaled Unscaled Scaled 

3334 3694.75 3579.47 3945.26 3574.01 v NH2 

3206 3395.78 3289.83 3766.10 3411.71 v NH2 

3182 2967.99 2875.39 3734.76 3383.32 v OH 

2973.2 3127.74 3030.15 3268.71 2961.12 v CH3 

2818.5 3105.4 3008.51 3247.3 2941.73 v CH3 

1700.8 1726.05 1672.20 1927.91 1746.49 v C=O 

1562.5 1614.86 1564.48 1762.23 1596.40 v C-N 

1605.9 1607.12 1556.98 1749.75 1585.10 v Ar C=C 

1454 1585.05 1535.60 1746.36 1582.03 v Ar C=C 

474.6 422.32 409.14 460.65 417.30 v C-Cl 
a Vibrational assignment: , stretching 

 
TABLE V 

THE EXPERIMENTAL AND THEORETICAL NMR CHEMICALS SHIFTS  

Chemical Shift, Calculated 

(ppm)a Experimental HF 6−311+G (d,p)b B3LYP 6−311+G (d,p)c 

1H NMR 

O1-H1O1 12.796 11.4673 14.4703 

N2-H1N2 7.013 7.8549 9.6058 

N2-H2N2 - 4.7557 4.8957 

Aromatic proton 7.851−6.565 8.8596, 8.6502 8.4747, 8.4072 

7.600, 7.4792 7.5273, 7.442 

6.2137 6.2909 

Methyl group 
2.22−2.52 

 
 

2.7201, 2.5545 2.5536, 
2.5233 2.2684, 2.0141 

2.8637, 2.5282 
2.5258, 2.4312 
2.2685, 1.9102 

13C NMR 

C2 169.805 179.663 177.978 

C6 167.276 171.682 176.55 

C4 163.221 182.8 175.412 

C1 159.851 170.469 168.72 

C10 142.987 154.694 151.634 

C12 129.294 142.342 137.999 

C8 - 141.459 137.186 

C11 129.078 132.5 134.394 

C9 - 131.463 133.933 

C7 127.980 130.607 134.121 

C3 107.99 105.06 112.942 

C5 23.18 23.8058 24.5625 

C13 21.08 21.735 23.8748 
a The atoms numbering are referred to the X-ray molecular diagram in Fig. 2 
b The isotropic chemical shift with respect to Tetramethysilane (TMS) in HF 6-311+G (d,p) are 32.4495 ppm for 1H NMR and 195.8342 ppm for 13C NMR. 
c The isotropic chemical shift with respect to Tetramethysilane (TMS) in B3LYP 6-311+G (d,p) are 31.9844 ppm for 1H NMR and 184.0085 ppm for 13C 

NMR. 
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TABLE VI 
ACIDITY OF COMPLEXES OF 2A4C6MP BASES AND CARBOXYLIC ACID 

Compounds pKa ΔpKab Crystalline form References 

2-methylbenzoic acid 3.96 0.2 Cocrystal [6] 

3-methylbenzoic acid 4.08 0.08 Cocrystal [6] 

4-methylbenzoic acid 4.26 -0.1 Cocrystal This work 

2-chlorobenzoic acid 3.07 1.09 Cocrystal [6] 

4-chlorobenzoic acid 4.07 0.09 Cocrystal [6] 

Benzoic acid 4.08 0.08 Cocrystal [6] 

3-nitrobenzoic acid 3.48 0.68 Cocrystal [6] 

4-nitrobenzoic acid 3.16 1.00 Cocrystal [6] 

4-methoxybenzoic acid 4.37 -0.21 Cocrystal [6] 

Phthalic acid 5.49 -1.33 Cocrystal [6] 

Cinnamic acid 4.51 -0.35 Cocrystal [6] 
b The pKa value of 2-amino-4-chloro-6-methylpyrimidine (2A4C6MP) is 

4.16. 
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