Study of the Green Composite Jute/Epoxy

Work presented is interested in the characterization of
the quasistatic mechanical properties and in fatigue of a composite
laminated in jute/epoxy. The natural fibers offer promising prospects
thanks to their interesting specific properties, because of their low
density, but also with their bio-deterioration. Several scientific
studies highlighted the good mechanical resistance of the vegetable
fiber composites reinforced, even after several recycling. Because of
the environmental standards that become increasingly severe, one
attends the emergence of eco-materials at the base of natural fibers
such as flax, bamboo, hemp, sisal, jute. The fatigue tests on
elementary vegetable fibers show an increase of about 60% of the
rigidity of elementary fibers of hemp subjected to cyclic loadings. In
this study, the test-tubes manufactured by the method infusion have
sequences of stacking of 0/90° and ± 45° for the shearing and tensile
tests. The quasistatic tests reveal a variability of the mechanical
properties of about 8%. The tensile fatigue tests were carried out for
levels of constraints equivalent to half of the ultimate values of the
composite. Once the fatigue tests carried out for well-defined values
of cycles, a series of static tests of traction type highlights the
influence of the number of cycles on the quasi-static mechanical
behavior of the laminate jute/epoxy.





References:
[1] W. P. Schmidt, H. M. Beyer. 1998 Life Cycle Study on a Natural Fiber
Reinforced Component. SAE Technical Paper 982195.
[2] C. Baley. 2002. Analysis of the flax fibers tensile behavior and analysis
of the tensile stiffness increase. Composites 33A. 939–948.
[3] H.CH.Spatz, L.Köhler et K.J. Niklas. 1999 Mechanical behavior of plant
tissue: composite materials or structures. J. of Exp. Biology, 202. 3269-
3272.
[4] L. Köhler, H.C. Spatz. 2002. Micromechanics of plant tissues beyond
the linear-elastic range. Planta, 215. 33-40.
[5] L. J. Broutman Sahu S. 1972. Composites Materials, testing and design.
ASTM STP, 170-188.
[6] Ph. Boisse, B. Zouari, A. Gasser. 2005. A mesoscopic approach for the
simulation of woven fiber composite forming. Composites. Science and
Technology 65 429–436.
[7] S. Kawabata, M. Niwa, H. J. Kawai. 1973. The Finite Deformation
Theory of Plain Weave Fabrics Part I: The Biaxial Deformation Theory.
Textile Inst. 64-1, 21-46.
[8] J. Gassan, I. Mildner, and A. K. Bledzki. 1999. Influence of fiber
structure modification on the mechanical properties of Flax Fiber-Epoxy
composites. Mechanics of Comp. Materials, Vol. 35/ 5.
[9] K. Chaudhuri, M.A. Chaudhuri. 1998. Effects of short-term NaCl stress
on water relations and gas exchange of two jute species. Biologia
plantarum 40 (3). 373-380.
[10] J.W.S. Hearle. The fine structure of fibers and crystalline polymers. III.
Interpretation of the mechanical properties of fibers. Journal of Applied
Polymers Science, 7 1207-1223 (1963).
[11] R. Rao, N. Balas. And J. Chanda. 1981. App. Poly. Sci. Engg. 26. 9069.
[12] S.K.Garkhail, R.W.H. Heijenrath, T. Peijs. 2000. Mechanical properties
of natural-fiber-mat reinforced thermoplastics based on flax fibers and
polypropylene. Appl. Compos. Mater. 7. 351–372.
[13] D. Ray, BK. Sarkar, S. Das, AK. Rana. 2002. Dynamic mechanical and
thermal analysis of vinylester–resin– matrix composites reinforced with
untreated and alkali-treated jute fibers.Compos Sci Technol; 62:9 11–17.
[14] LY. Mwaikambo, M.P. Ansell. 2003. Hemp fiber reinforced cashew nut
shell liquid composites. Compos Sci Technol; 63:1. 297–305.
[15] M.A. Khan, F. Mina, L.T. Drzal. 2000. Influence of silane coupling
agents of different functionalities on the performance of jute–
polycarbonate composites. 3rd int. wood and natural fiber composite
symposium.
[16] J. Gassan, AK. Bledzki. Effect of cyclic moisture absorption desorption
on the mechanical properties of silanized jute–epoxy composites. Polym.
Composites, 20 (4):6. 04–11 (1999).
[17] LA. Pothan, S. Thomas. Compos Science and Technologie, 63:12. 31–
40 (2003).
[18] PJ Herrera-Franco, A. Valadez-Gonzales. 2004. Mechanical properties
of continuous natural fiber reinforced polymer composites. Composites
Part A.; 35:3. 39–45.
[19] M.A. Khan, M.M. Rahman, K.S. Akhunzada. 2002. Grafting of different
monomers onto jute yarn by in situ UV-radiation method: effect of
additives. Polym Plast Tech Eng;41(4):6. 77–89.
[20] M. Masudul Hassan, M.R. Islam, M.A. Khan. 2003Improvement of
physicomechanical properties of jute yarn by photografting with 3-
(trimethoxysilyl) propylmethacrylate. Adhes Sci Technol. 17(5):7. 37–
50.
[21] D. Plackett and A. Vázquez. 2004. Green Composites: polymer
composites and the environment. Woodhead Publishers, Cambridge.
123.
[22] M. A. Khan, N. Haque, A. Al-Kafi, M. N. Alam, M. Z. Abedin. 2006.
Jute reinforced polymer composite by gamma radiation: Effect of
surface treatment with UV radiation. ISSN 0360-2559 CODEN
PPTEC7. vol. 45, 4-6. 607-613.
[23] R. G. Raj, B. V. Kokta and C. Daneault. 1990. Wood flour as a low-cost
reinforcing filler for polyethylene: studies on mechanical properties. J.
of Materials Science, 25.1851-1855.
[24] D. Harper and M. Wolcott. 2004. Interaction between coupling agent
and lubricants in wood–polypropylene composites. Comp. Part A:
Applied Sci. and Manuf. 35. 385-394.
[25] Aranberri, T. Lampke and A. Bismarck. 2003. Wetting behavior of flax
fibers as reinforcement for polypropylene. J. of Colloid and Interf. Sci.
263. 580-589.
[26] Karmarkar, S. Chauhan, M. Modak, M. Chanda. 2007. Mechanical
properties of wood–fiber reinforced polypropylene composites: Effect of
a novel compatibilizer with isocyanate functional group. Comp. Part A.
38 (2). 227-233.
[27] J. B. Naik, S. Mishra, C. Esterification. 2007. Effect of Maleic
Anhydride on Surface and Volume Resistivity of Natural
Fiber/Polystyrene. Polymer-Plastics Techno. and engineering 46. 537–
540.
[28] Sy Trek Sean. 2007. Composites from Newsprint Fiber and Polystyrene.
Technology and engineering, 46(4). 421 – 425.
[29] T. Keener, R.Stuart, T.Brown. 2004. Maleated coupling agents for
natural fiber composites. C. Part A: Applied S. and Manuf. 35 (3).357-
363.
[30] H. Jiang, D. P. Kamdem. 2004. Development of poly(vinyl
chloride)/wood composites. Journal of Vinyl and Additive Technology.
10 (2). 59-69.
[31] K. Sabeel Ahmed, S.Viyayarangan. 2008. Tensile, flexural and
interlaminar shear properties of woven jute and jute-glass fabric
reinforced polyester composites. J. of mat. processing technology 207.
330-335.
[32] K. Sabeel A, S.Viyayarangan and C. Rajput. Mechanical behavior of
isothalic polyester-based untreated woven Jute and glass fabric hybrid
composites. Journal of Reinforced Plastics & Composites, 25(15). 1549-
1569.
[33] D. Placketta, T. Løgstrup, W. Batsberg, L. Nielsenc. 2003.
Biodegradable composites based on l-polylactide and jute fibers. C. Sci.
and T. 63. 1287–1296.
[34] M. Wollerdorfer, H. Bader. 1998. Influence of natural fibers on the
mechanical properties of biodegradable polymers. Industrial Crops and
Products 8. 105–112.
[35] K. Van de Velde, P. Kiekens, 2002. Biopolymers: overview of several
properties and consequences on their applications. Polymer Testing 21.
433–442.
[36] V. Alvarez, E. Rodriguez, A. Vázquez. 2006. Thermal degradation and
decomposition of Jute/Vinylester composites. J. of Thermal A. and
Calori. 85 2. 383–389.
[37] C. Hong, I. Hwang, N. Kim, D. Park, B. Hwang, C. Nah. 2008.
Mechanical properties of silanized jute-polypropylene composites. J. of
Ind. and Engineering Chemistry 14. 71-76.
[38] Sakurada, Y. Nukushina, T. Ito. 1962. Experimental determination of the
elastic modulus of crystalline regions in oriented polymers. J/ Polym Sci,
57. 651-660.
[39] G.C. Davies, D.M. Bruce. 1998. Effect of environmental relative
humidity and damage on the tensile properties of flax and nettle fibers.
Res. Journal, 68(9) 623-629.