Abstract: Bangladesh has set its goal to reach upper middle-income country status by 2024. To attain this status, the country must satisfy the World Bank requirement of achieving minimum Gross National Income (GNI). Number of youth job seekers in the country is increasing. University graduates are looking for decent jobs. So, the vital issue of this country is to understand how the GNI and jobs can be increased. The objective of this paper is to address these issues and find ways to create more job opportunities for youths at home and abroad which will increase the country’s GNI. The paper studies proportion of different goods Bangladesh exported, and also the percentage of employment in different sectors. The data used here for the purpose of analysis have been collected from the available literature. These data are then plotted and analyzed. Through these studies, it is concluded that growth in sectors like agricultural, ready-made garments (RMG), jute industries and fisheries are declining and the business community is not interested in setting up capital-intensive industries. Under this situation, the country needs to explore other business opportunities for a higher economic growth rate. Knowledge can substitute the physical resource. Since the country consists of the large youth population, higher education will play a key role in economic development. It now needs graduates with higher-order skills with innovative quality. Such dispositions demand changes in a university’s curriculum, teaching and assessment method which will function young generations as active learners and creators. By bringing these changes in higher education, a knowledge-based society can be created. The application of such knowledge and creativity will then become the commodity of Bangladesh which will help to reach its goal as an upper middle-income country.
Abstract: Natural fibers have attained the potential market in the composite industry because of the huge environmental impact caused by synthetic fibers. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. Even though there is a good motive to utilize the natural supplement, the strength of the natural fiber composites is still a topic of discussion. In recent days, many researchers are showing interest in the chemical modification of the natural fibers to increase various mechanical and thermal properties. In the present study, jute fibers have been modified chemically using glutaric anhydride at different concentrations of 5%, 10%, 20%, and 30%. The glutaric anhydride solution is prepared by dissolving the different quantity of glutaric anhydride in benzene and dimethyl-sulfoxide using sodium formate catalyst. The jute fiber mats have been treated by the method of retting at various time intervals of 3, 6, 12, 24, and 36 hours. The modification structure of the treated fibers has been confirmed with infrared spectroscopy. The degree of modification increases with an increase in retention time, but higher retention time has damaged the fiber structure. The unmodified fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix under room temperature. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of unmodified fiber.
Abstract: Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.
Abstract: Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability.
Abstract: In the last few decades, due to their advanced properties, there has been an increasing interest in hybrid composite materials. In this study, the effect of different stacking sequences of jute and carbon fabric plies on dynamic mechanical properties of composite laminates were investigated. Vacuum bagging system was used to fabricate the composite samples. Each composite laminate was reinforced with two plies of jute fabric and two plies of carbon fabric by varying the position of layers. Dynamic mechanical analyzer (DMA) was used to examine the dynamic mechanical properties of composite laminates with increasing temperature. Results showed that the composite sample, which has carbon fabric at the outer layers, has the highest storage and loss modulus. Besides, it was observed that glass transition temperature (Tg) of samples are close to each other and at about 75 °C.
Abstract: This paper describes the development of new class of
epoxy based rice husk filled jute reinforced composites. Rice husk
flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and
triethylenetetramine (T.E.T.A) is used as matrix and hardener
respectively. It investigates the mechanical properties of the
composites and a comparison is done for monolithic jute composite
and the filled ones. The specimens are prepared according to the
ASTM standards and experimentation is carried out using INSTRON
8801. The result shows that with the increase of filler percentage the
tensile properties increases but compressive and flexural properties
decreases.
Abstract: Polylactic acid (PLA) is the most commercially
available bio-based and biodegradable plastic at present. PLA has
been used in plastic related industries including single-used
containers, disposable and environmentally friendly packaging owing
to its renewability, compostability, biodegradability, and safety.
Although PLA demonstrates reasonably good optical, physical,
mechanical and barrier properties comparable to the existing
petroleum-based plastics, its brittleness and mold shrinkage as well as
its price are the points to be concerned for the production of rigid and
semi-rigid packaging. Blending PLA with other bio-based polymers
including thermoplastic starch (TPS) is an alternative not only to
achieve a complete bio-based plastic, but also to reduce the
brittleness, shrinkage during molding and production cost of the
PLA-based products. TPS is a material produced mainly from starch
which is cheap, renewable, biodegradable, compostable, and nontoxic.
It is commonly prepared by a plasticization of starch under
applying heat and shear force. Although glycerol has been reported as
one of the most plasticizers used for preparing TPS, its migration
caused the surface stickiness of the TPS products. In some cases,
mixed plasticizers or natural fibers have been applied to impede the
retrogradation of starch or reduce the migration of glycerol. The
introduction of fibers into TPS-based materials could reinforce the
polymer matrix as well. Therefore, the objective of the present
research is to study the effect of starch type (i.e. native starch and
phosphate starch), plasticizer type (i.e. glycerol and xylitol with a
weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75 and
0:100) and fiber content (i.e. in the range of 1-25 %wt) on properties
of PLA/TPS blend and composite. PLA/TPS blends and composites
were prepared using a twin-screw extruder and then converted into
dumbbell-shaped specimens using an injection molding machine. The
PLA/TPS blends prepared by using phosphate starch showed higher
tensile strength and stiffness than the blends prepared by using native
one. In contrast, the blends from native starch exhibited higher
extensibility and heat distortion temperature (HDT) than those from
the modified starch. Increasing xylitol content resulted in enhanced
tensile strength, stiffness and water resistance, but decreased
extensibility and HDT of the PLA/TPS blend. Tensile properties and
hydrophobicity of the blend could be improved by incorporating
silane treated-jute fibers.
Abstract: Work presented is interested in the characterization of
the quasistatic mechanical properties and in fatigue of a composite
laminated in jute/epoxy. The natural fibers offer promising prospects
thanks to their interesting specific properties, because of their low
density, but also with their bio-deterioration. Several scientific
studies highlighted the good mechanical resistance of the vegetable
fiber composites reinforced, even after several recycling. Because of
the environmental standards that become increasingly severe, one
attends the emergence of eco-materials at the base of natural fibers
such as flax, bamboo, hemp, sisal, jute. The fatigue tests on
elementary vegetable fibers show an increase of about 60% of the
rigidity of elementary fibers of hemp subjected to cyclic loadings. In
this study, the test-tubes manufactured by the method infusion have
sequences of stacking of 0/90° and ± 45° for the shearing and tensile
tests. The quasistatic tests reveal a variability of the mechanical
properties of about 8%. The tensile fatigue tests were carried out for
levels of constraints equivalent to half of the ultimate values of the
composite. Once the fatigue tests carried out for well-defined values
of cycles, a series of static tests of traction type highlights the
influence of the number of cycles on the quasi-static mechanical
behavior of the laminate jute/epoxy.
Abstract: Protection of slope and embankment from erosion has
become an important issue in Bangladesh. The constructions of
strong structures require large capital, integrated designing, high
maintenance cost. Strong structure methods have negative impact on
the environment and sometimes not function for the design period.
Plantation of vetiver system along the slopes is an alternative
solution. Vetiver not only serves the purpose of slope protection but
also adds green environment reducing pollution. Vetiver is available
in almost all the districts of Bangladesh. This paper presents the
application of vetiver system with geo-jute, for slope protection and
erosion control of embankments and slopes. In-situ shear tests have
been conducted on vetiver rooted soil system to find the shear
strength. The shear strength and effective soil cohesion of vetiver
rooted soil matrix are respectively 2.0 times and 2.1 times higher than
that of the bared soil. Similar trends have been found in direct shear
tests conducted on laboratory reconstituted samples. Field trials have
been conducted in road embankment and slope protection with
vetiver at different sites. During the time of vetiver root growth the
soil protection has been accomplished by geo-jute. As the geo-jute
degrades with time, vetiver roots grow and take over the function of
geo-jutes. Slope stability analyses showed that vegetation increase
the factor of safety significantly.
Abstract: Effect of geometry on crushing behavior, energy absorption and failure mode of woven roving jute fiber/epoxy laminated composite tubes were experimentally studied. Investigations were carried out on three different geometrical types of composite tubes (circular, square and radial corrugated) subjected to axial compressive loading. It was observed in axial crushing study that the load bearing capability is significantly influenced by corrugation geometry. The influence of geometries of specimens was supported by the plotted load – displacement curves of the tests.
Abstract: Novel acrylated epoxidized hemp oil (AEHO) based
bioresins were successfully synthesised, characterized and applied to
biocomposites reinforced with woven jute fibre. Characterisation of
the synthesised AEHO consisted of acid number titrations and FTIR
spectroscopy to assess the success of the acrylation reaction. Three
different matrices were produced (vinylester (VE), 50/50 blend of
AEHO/VE and 100% AEHO) and reinforced with jute fibre to form
three different types of biocomposite samples. Mechanical properties
in the form of flexural and interlaminar shear strength (ILSS) were
investigated and compared for the different samples. Results from the
mechanical tests showed that AEHO and 50/50 based neat bioresins
displayed lower flexural properties compared with the VE samples.
However when applied to biocomposites and compared with VE
based samples, AEHO biocomposites demonstrated comparable
flexural performance and improved ILSS. These results are attributed
to improved fibre-matrix interfacial adhesion due to surface-chemical
compatibility between the natural fibres and bioresin.
Abstract: The term hybrid composite refers to the composite
containing more than one type of fiber material as reinforcing fillers.
It has become attractive structural material due to the ability of
providing better combination of properties with respect to single fiber
containing composite. The eco-friendly nature as well as processing
advantage, light weight and low cost have enhanced the attraction
and interest of natural fiber reinforced composite. The objective of
present research is to study the mechanical properties of jute-coir
fiber reinforced hybrid polypropylene (PP) composite according to
filler loading variation. In the present work composites were
manufactured by using hot press machine at four levels of fiber
loading (5, 10, 15 and 20 wt %). Jute and coir fibers were utilized at a
ratio of (1:1) during composite manufacturing. Tensile, flexural,
impact and hardness tests were conducted for mechanical
characterization. Tensile test of composite showed a decreasing trend
of tensile strength and increasing trend of the Young-s modulus with
increasing fiber content. During flexural, impact and hardness tests,
the flexural strength, flexural modulus, impact strength and hardness
were found to be increased with increasing fiber loading. Based on
the fiber loading used in this study, 20% fiber reinforced composite
resulted the best set of mechanical properties.