Study of Cahn-Hilliard Equation to Simulate Phase Separation

An investigation into Cahn-Hilliard equation was
carried out through numerical simulation to identify a possible phase
separation for one and two dimensional domains. It was observed that
this equation can reproduce important mass fluxes necessary for
phase separation within the miscibility gap and for coalescence of
particles.





References:
[1] Cahn, J. W., & Hilliard, J. E. (1958). Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 28(2), 258. doi:10.1063/1.1744102
[2] De Mello, E. V. L., &Filho, O. T. D. S. (2004). Numerical Study of the Cahn-Hilliard Equation in One, Two and Three Dimensions, 20. Statistical Mechanics; Superconductivity. doi:10.1016/j.physa.2004.08.076
[3] Bray, a. J. (1994). Theory of phase-ordering kinetics. Advances in Physics, 43(3), 357–459. doi:10.1080/00018739400101505
[4] Jing, X. N., Zhao, J. H., & He, L. H. (2003). 2D aggregate evolution in sintering due to multiple diffusion approaches. Materials Chemistry and Physics, 80(3), 595–598. doi:10.1016/S0254-0584(03)00102-0
[5] Cueto-Felgueroso, L., &Peraire, J. (2008). A time-adaptive finite volume method for the Cahn–Hilliard and Kuramoto–Sivashinsky equations. Journal of Computational Physics, 227(24), 9985–10017. doi:10.1016/j.jcp.2008.07.024
[6] Porter, D. A., &Easterling, K. E. (1992). Phase Transformation in metals and alloys. (C. & Hall, Ed.) (2nd ed., p. 440).
[7] Baghsheikhi, S. (2009). Spinodal decomposition in the binary Fe-Cr system. Royal Institute of Technology - Stockholm - Sweden.