State Estimation Based on Unscented Kalman Filter for Burgers’ Equation

Controlling the flow of fluids is a challenging problem
that arises in many fields. Burgers’ equation is a fundamental
equation for several flow phenomena such as traffic, shock waves,
and turbulence. The optimal feedback control method, so-called
model predictive control, has been proposed for Burgers’ equation.
However, the model predictive control method is inapplicable to
systems whose all state variables are not exactly known. In practical
point of view, it is unusual that all the state variables of systems are
exactly known, because the state variables of systems are measured
through output sensors and limited parts of them can be only
available. In fact, it is usual that flow velocities of fluid systems
cannot be measured for all spatial domains. Hence, any practical
feedback controller for fluid systems must incorporate some type of
state estimator. To apply the model predictive control to the fluid
systems described by Burgers’ equation, it is needed to establish
a state estimation method for Burgers’ equation with limited
measurable state variables. To this purpose, we apply unscented
Kalman filter for estimating the state variables of fluid systems
described by Burgers’ equation. The objective of this study is to
establish a state estimation method based on unscented Kalman filter
for Burgers’ equation. The effectiveness of the proposed method is
verified by numerical simulations.




References:
[1] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with
Numerical Solution for Thermal Fluid Systems, Proceedings of SICE
Annual Conference, pp. 1298-1303, 2012.
[2] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Receding Horizon Control
for High-Dimensional Burgersf Equations with Boundary Control
Inputs, Transactions of the Japan Society for Aeronautical and Space
Sciences, Vol. 56, No.3, pp. 137-144, 2013.
[3] R. Satoh, T. Hashimoto and T. Ohtsuka, Receding Horizon Control for
Mass Transport Phenomena in Thermal Fluid Systems, Proceedings of
Australian Control Conference, pp. 273-278, 2014.
[4] T. Hashimoto, Receding Horizon Control for a Class of Discrete-time
Nonlinear Implicit Systems, Proceedings of IEEE Conference on
Decision and Control, pp. 5089-5094, 2014.
[5] T. Hashimoto, Optimal Feedback Control Method Using Magnetic Force
for Crystal Growth Dynamics, International Journal of Science and
Engineering Investigations, Vol. 4, Issue 45, pp. 1-6, 2015.
[6] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with
Numerical Solution for Spatiotemporal Dynamic Systems, Proceedings
of IEEE Conference on Decision and Control, pp. 2920-2925, 2012.
[7] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Output Feedback Receding
Horizon Control for Spatiotemporal Dynamic Systems, Proceedings of
Asian Control Conference, 2013.
[8] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control
for Hot Strip Mill Cooling Systems, IEEE/ASME Transactions on
Mechatronics, Vol. 18, No. 3, pp. 998-1005, 2013.
[9] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control
With Numerical Solution for Nonlinear Parabolic Partial Differential
Equations, IEEE Transactions on Automatic Control, Vol. 58, No. 3,
pp. 725-730, 2013.
[10] T. Hashimoto, R. Satoh and T. Ohtsuka, Receding Horizon Control
for Spatiotemporal Dynamic Systems, Mechanical Engineering Journal,
Vol. 3, No. 2, 15-00345, 2016.
[11] T. Hashimoto, I. Yoshimoto, T. Ohtsuka, Probabilistic Constrained
Model Predictive Control for Schr¨odinger Equation with Finite
Approximation, Proceedings of SICE Annual Conference, pp.
1613-1618, 2012.
[12] T. Hashimoto, Stability of Stochastic Model Predictive Control for
Schr¨odinger Equation with Finite Approximation, International Journal
of Mathematical, Computational, Physical, Electrical and Computer
Engineering, Vol. 11, No. 1, pp. 12-17, 2017.
[13] T. Hashimoto, Probabilistic Constrained Model Predictive Control for
Linear Discrete-time Systems with Additive Stochastic Disturbances,
Proceedings of IEEE Conference on Decision and Control, pp.
6434-6439, 2013.
[14] T. Hashimoto, Computational Simulations on Stability of Model
Predictive Control for Linear Discrete-time Stochastic Systems,
International Journal of Computer, Electrical, Automation, Control and
Information Engineering, Vol. 9, No. 8, pp. 1385-1390, 2015.
[15] T. Hashimoto, Stochastic Model Predictive Control for Linear
Discrete-time Systems with Random Dither Quantization, International
Journal of Mathematical, Computational, Physical, Electrical and
Computer Engineering, Vol. 11, No. 2, pp. 130-134, 2017.
[16] T. Hashimoto, Conservativeness of Probabilistic Constrained Optimal
Control Method for Unknown Probability Distribution, International
Journal of Mathematical, Computational, Physical, Electrical and
Computer Engineering, Vol. 9, No. 9, pp. 11-15, 2015.
[17] T. Hashimoto, A Method for Solving Optimal Control Problems
subject to Probabilistic Affine State Constraints for Linear Discrete-time
Uncertain Systems, International Journal of Mechanical and Production
Engineering, Vol. 3, Issue 12, pp. 6-10, 2015.
[18] T. Hashimoto, Solutions to Probabilistic Constrained Optimal Control
Problems Using Concentration Inequalities, International Journal of
Mathematical, Computational, Physical, Electrical and Computer
Engineering, Vol. 10, No. 10, pp. 441-446, 2016.
[19] H. W. Sorenson, Ed., Kalman Filtering: Theory and Application,
Piscataway, NJ: IEEE, 1985.
[20] S. Julier, J. Uhlmann and H. F. Durrant-Whyte, A New Method for
the Nonlinear Transformation of Means and Covariances in Filters and
Estimators, IEEE Transactions on Automatic Control, Vol. 45, 2000, pp.
477-482.
[21] T. Hashimoto, T. Amemiya and H. A. Fujii, Stabilization of Linear
Uncertain Delay Systems with Antisymmetric Stepwise Configurations,
Journal of Dynamical and Control Systems, Vol. 14, No. 1, pp. 1-31,
2008.
[22] T. Hashimoto, T. Amemiya and H. A. Fujii, Output Feedback
Stabilization of Linear Time-varying Uncertain Delay Systems,
Mathematical Problems in Engineering, Vol. 2009, Article ID. 457468,
2009.
[23] T. Hashimoto and T. Amemiya, Stabilization of Linear Time-varying
Uncertain Delay Systems with Double Triangular Configuration, WSEAS
Transactions on Systems and Control, Vol. 4, No.9, pp.465-475, 2009.
[24] T. Hashimoto, Stabilization of Abstract Delay Systems on Banach
Lattices using Nonnegative Semigroups, Proceedings of the 50th IEEE
Conference on Decision and Control, pp. 1872-1877, 2011.
[25] T. Hashimoto, A Variable Transformation Method for Stabilizing
Abstract Delay Systems on Banach Lattices, Journal of Mathematics
Research, Vol. 4, No. 2, pp.2-9, 2012.
[26] T. Hashimoto, An Optimization Algorithm for Designing a Stabilizing
Controller for Linear Time-varying Uncertain Systems with State
Delays, Computational Mathematics and Modeling, Vol.24, No.1,
pp.90-102, 2013.