Schmitt Trigger Based SRAM Using Finfet Technology- Shorted Gate Mode

The most widely used semiconductor memory types
are the Dynamic Random Access Memory (DRAM) and Static
Random Access memory (SRAM). Competition among memory
manufacturers drives the need to decrease power consumption and
reduce the probability of read failure. A technology that is relatively
new and has not been explored is the FinFET technology. In this
paper, a single cell Schmitt Trigger Based Static RAM using FinFET
technology is proposed and analyzed. The accuracy of the result is
validated by means of HSPICE simulations with 32nm FinFET
technology and the results are then compared with 6T SRAM using
the same technology.





References:
[1] UjwalShirode, Ajay Gadhe, "Read stability and read failure analysis of
low voltage Schmitt Trigger based SRAM bit cell”, International Journal
of Engineering Research and Applications (IJERA) Vol.3, Issue 1,
January-February 2013W.-K. Chen, Linear Networks and Systems
(Book style). Belmont, CA: Wadsworth, 1993, pp. 123–135.
[2] "International Technology Road map for Semiconductors”, 2006.
[3] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B.L. Ji, S. R.
Nassif, E. J. Nowak, D. J. Pearson, and N. J.Rohrer, "High-performance
CMOS variability in the 65-nm regime and beyond”, IBM J.Res. Dev.,
vol. 50, no. 4/5, pp. 433–449, Jul./Sep. 2006.
[4] N. Collaert, N. A. De Keersgieter, A. Dixit, I. erain, L.-S. Lai, D.
Lenoble, A. Mercha, A. Nackaerts, B.J. Pawlak, R. Rooyackers, T.
Schulz, K.T. Sar, N.J. Son, M.J.H. Van Dal, P. Verheyen, K von Arnim,
L. Witters, M. De, S.Biesemans, M. Jurczak, "Multi-gate devices for the
32nm technology node and beyond”, Solid State Device Research
Conference, 2007. ESSDERC 2007. 37th European,vol.,no., pp.143-146,
11-13 Sept. 2007
[5] K. Noda, T. Uchida, T. Tatsumi, T. Aoyama, K.Nakajima, H.
Miyamoto, T. Hashimoto, and I. Sasake, "0.1pm delta-doped MOSFET
using post-energy implanting selective epitaxy”, in 1994- VLSI Symp.
VLSI Technology Dig. Tech. Papers, pp. 19-20.R. Yan, A. Ourmazd,
and K. Lee, "Scaling the Si MOSFET: From bulk to SO1 to bulk”, IEEE
Trans. Electron Devices, vol. 39, pp. 1704-1710, July 1992.
[6] F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P.KO, and C. Hu, "A
dynamic-threshold MOSFET for ultra-low voltage operation”,Znt.
Electron Devices Meet. Tech. Dig., 1994, pp. 809-812.
[7] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K.Asano, C. Kuo,
T.-J.King, J. Bokor, and C. Hu, "A folded channel MOSFET for deepsub-
tenth micron era”, in IED MTech. Dig., 1998, pp. 1032–1034.
[8] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K.Asano, C. Kuo,
T.-J.King, J. Bokor, and C. Hu, "A folded channel MOSFET for deepsub-
tenth micron era,” in IED MTech. Dig., 1998, pp. 1032–1034.
[9] Prateek Mishra, AnishMuttreja, and Niraj K. Jha"FinFET Circuit
Design”, Nano Electronics circuit design, 2011, Springer, pp. 23-54
[10] Munish Kumar, ParminderKaur, SheenuThapar, "Design of CMOS
Schmitt Trigger”, International Journal of Engineering and Innovative
Technology (IJEIT) Volume 2, Issue 1, July 2012.
[11] Jaydeep P. Kulkarn, Keejong Kim, and Kaushik Roy, "A 160 mV
Robust Schmitt Trigger Based Sub threshold SRAM” IEEE Journal Of
Solid-State Circuits, Vol. 42, No. 10, October 2007.
[12] E. Seevinck, F. List, and J. Lohstroh, "Static noise margin analysis of
MOS SRAM cells”, IEEE Solid-State Circuits, vol. SC-22, no. 5, Oct.
1987, 748–754.
[13] BOOK title, "CMOS digital integrated circuits: analysis and design”,
Authored Sung-Mo Kang, Yusuf Leblebici.
[14] BOOK title, "CMOS circuit design, layout and simulation”, Volume 1,
Authored R. Jacob Baker.
[15] Pilo, H., Barwin, C., Braceras, G., Browning, C., Lamphier, S., Towler,
F. "An SRAM Design in 65-nm Technology Node Featuring Read and
Write-Assist Circuits to Expand Operating Voltage”, IEEE Journal of
Solid-State Circuits. 42. 4. 813 - 819 (Apr. 2007).
[16] F. J. List, "TheStatic Noise Margin of SRAM cells,” in Dig. Tech.
Papers, ESSCIRC (Delft, The Netherlands), Sept. 1986, pp. 16–18.