Ray Tracing Technique based 60 GHz Band Propagation Modelling and Influence of People Shadowing

The main objectif of this paper is to present a tool that we have developed subject to characterize and modelling indoor radio channel propagation at millimetric wave. The tool is based on the ray tracing technique (RTT). As, in realistic environment we cannot neglect the significant impact of Human Body Shadowing and other objects in motion on indoor 60 GHz propagation channel. Hence, our proposed model allows a simulation of propagation in a dynamic indoor environment. First, we describe a model of human body. Second, RTT with this model is used to simulate the propagation of millimeter waves in the presence of persons in motion. Results of the simulation show that this tool gives results in agreement with those reported in the literature. Specially, the effects of people motion on temporal channel properties.




References:
[1] S. Collonge, G. Zaharia, and G. El Zein "Influence of the Human Activity
on Wide-Band Characteristics of the 60 GHz Indoor Radio Channel,"
IEEE Trans. on Wireless Comm., Vol. 3, No. 6, Nov. 2004.
[2] K. Sato and T. Manabe "Estimation of Propagation-Path Visibility for
Indoor Wireless LAN Systems under Shadowing Condition by Human
Bodies," Vehicular Technology Conference, Vol. 3, 18-21 May 1998, pp.
2109 - 2113.
[3] L.J Greenstein and V. Erceg "Gain reductions due to scatter on wireless
paths with directional antennas," IEEE Communications Letters, Volume
3, Issue 6, June 1999 Page(s):169 - 171
[4] H. Yang, P. F.M. Smulders and M. H.A.J. Herben "Indoor Channel
Measurements and Analysis in the Frequency Bands 2 GHz and 60 GHz,"
2005 IEEE PIMRC, pp. 579-583.
[5] P. F. M. Smulders and L. MI. Correia "Characterisation of Propagation
in 60 GHz Radio Channels," Electronics and Comm. Eng. Journal, April
1997, pp. 73-80.
[6] Y. Candy, S. Singh, " High Data Rate WLAN", IEEE Vehicular Technology
Conference, 2008, 11-14 May 2008, pp. 1821-1825.
[7] T. Tokumitsu, "K band and millimeter wave MMICs for emerging
commercial wireless applications," Microwave Theory and Techniques,
IEEE Transactions on, Vol. 49, (11), Nov 2001 pp. 2066-2072.
[8] A. Kajiwara, "Indoor propagation measurements at 94 GHz." IEEE
Personal, Indoor and Mobile Radio Communications, Vol. 3, (27-29),
Sep 1995 pp. 1026.
[9] A. Kajiwara, "Millimeter-wave indoor radio channel with artificial reflector",
Vehicular Technology, IEEE Transactions on Vol. 46, (2), May 1997
pp:486 - 493.
[10] John W. McKown an R. Lee Hamilton, Jr. " Ray Tracing as a Design
Tool for Radio Networks," IEEE Network Magazine, November 1991,
pp.27-30.
[11] A. Falsafi, K. Pahlavan and G. Yang " Transmission Techniques for
Radio LAN-s - A Comparative Performance Evaluation Using Ray
Tracing," IEEE Journal on Selected Areas in Communications, Vol. 14,
NO.3, April 1996, pp.477-491.
[12] P.F.M.Smulders " Geometrical Optics Model For Millimetre Wave
Indoor Radio Propagation " Electronics Letters 24th June 1993, Vol.29
No.13, pp. 1174-1175.
[13] G. L. Turin et al., " A Statistical Model of Urban Multipath Propagation
" IEEE Transactions on Vehicular Technology, Vol. VT-21, pp. 1-9,
February 1972.
[14] G.Yang, K. Pahlavant, J.F. Lee, A.J.Dagent, and J.Vancraeynest "
Prediction of Radio Wave Propagation in Four Blocks of New York City
Using 3D Ray Tracing," Proceedings IEEE Conference PIMRC -94, pp.
263-267.
[15] P. Kreuzgruber, P. Unterberger, R. Gahleitner " A Ray Splitting Model
for Indoor Radio Propagation Associated with Complex Geometries, "
Proceedings of 43rd IEEE, Vehicular Technology Conference, May 1993,
pp.227-230.
[16] J. El Abbadi, A. Khafaji, M. Belkasmi, A. Benuna, "A Human Body
Model for Ray Tracing Indoor Simulation," ICISP, Morroco, June, 2003.
[17] R. Saadane, A. Menouni, R. Knopp, and D. Aboutajdine, "Empirical
eigenanalysis of indoor UWB propagation channels," In IEEE Globecom,
volume 5, pages 32153219, Nov.-Dec. 2004.
[18] S. Obayashi, J. Zander, "A Body-Shadowing Model for Indoor Radio
Communication Environments," IEEE Transaction on Antennas and Propagation,
vol. 46, no. 6, June 1998.
[19] H. Hashemi, " Impulse Response Modeling of Indoor Radio Propagation
Channels " IEEE Journal Selected Areas on Communications, September
1993.
[20] Hashemi " The Indoor Radio Propagation Channel " Proceedings of the
IEEE, Vol.81,No.7, pp.941-968, July 1993.
[21] P. Pagani, P. Pajusco, "Experimental Assessment of the UWB Channel
Variability in a Dynamic Environment," in International Symposium on
Personal, Indoor and Mobile Radio Communications, Barcelona, Spain,
vol. 4, pages 29732977, septembre 2004.
[22] G. L. Turin et al., " A Statistical Model of Urban Multipath Propagation
" IEEE Transactions on Vehicular Technology, Vol. VT-21, pp. 1-9,
February 1972.
[23] H. Suzuki. " A Statistical Model for Urban Radio Propagation " IEEE
Transactions on Communications, Vol. COM28, No.7, pp.673-680, July
1977.
[24] H. Hashemi, " Simulation of the Urban Radio Propagation Channel "
IEEE Transactions on Vehicular Technology, Vol. VT-28, pp. 213-224,
August 1979.
[25] Kazimierz Siwiak " Radiwave Propagation and Antennas for Personal
Communications " Artech House Publishers London 1995.