Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX

This paper presents the results obtained by numerical simulation using the software ANSYS CFX-CFD for the air pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion in an electric thermal power plant. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. It is considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations it is measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that the average concentration are calculated, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.




References:
[1] Environmental Protection Agency of Romania, Integrated
Environmental Authorization 2013.
[2] ANSYS CFX-Solver Theory Guide, ANSYS Ltd., 2006.
[3] N. Ashgriz, J. Mostaghimi, An Introduction to Computational Fluid
Dynamics, in: J. Saleh (Ed.), Fluid Flow Handbook, McGraw-Hill
Professional, 2002, pp.24.1–24.52.
[4] Ruifeng Qi, Dedy Ng, Benjamin R. Cormier, M. Sam Mannan,
Numerical Simulations of LNG Vapor Dispersion in Brayton Fire
Training Fieldtests with ANSYS CFX, Journal of Hazardous Materials,
2010.
[5] M.J. Ivings, S.F. Jagger, C.J. Lea, D. M. Webber, Evaluating Vapor
Dispersion Models for Safety Analysis of LNG Facilities, Health &
Safety Laboratory, UK, 2007.
[6] ANSYS CFX-Post User’s Guide, ANSYS Ltd., 2006.
[7] H.K. Versteeg, W. Malalasekera, An Introduction to Computational
Fluid Dynamics: The Finite Volume Method, Second ed., Prentice Hall,
2007.
[8] H. A. Olvera, A. R. Choudhuri, Numerical Simulation of Hydrogen
Dispersion in the Vicinity of a Cubical Building in Stable Stratified
Atmospheres, Int. J. Hydrogen Energy 31 (2006) 2356–2369.
[9] Release 11.0 Documentation for ANSYS Workbench, ANSYS Ltd.,
2006.
[10] M.M. Foss, Introduction to LNG: An Overview on Liquefied Natural
Gas (LNG), It Properties, Organization of the LNG Industry and Safety
Considerations, Center for Energy Economics, University of Texas at
Austin, Houston, TX, 2007.
[11] G. Lazaroiu, The impact of CHP on the Environment, Politehnica Press,
Bucharest 2005.
[12] F. Gavelli, E. Bullister, H. Kytomaa, Application of CFD (fluent) to
LNG Spills into Geometrically Complex Environments, J.
Hazard.Mater.159 (2008) 158–168.
[13] S. Sklavounos, F. Rigas, Simulation of Coyote Series Trials—Part I:
CFD Estimation of Non-Isothermal LNG Releases and Comparison with
Box-Model Predictions, Chem. Eng. Sci. 61 (2006) 1434–1443.
[14] A. Luketa-Hanlin, R. P. Koopman, D. L. Ermak , On the Application of
Computational Fluid Dynamics Codes for Liquefied Natural Gas
Dispersion, J. Hazard. Mater.140 (2007) 504–517.
[15] B. Blocken, T. Stathopoulos, J. Carmeliet, CFD Simulation of the
Atmospheric Boundary Layer: Wall Function Problems, Atmos.
Environ. 41, (2007) 238–252.
[16] T. C. Brown, R. T. Cederwall, S. T. Chan, D. L. Ermak, R. P. Koopman,
K. C. Lamson, J. W. McClure, L.K. Morris, Falcon Series Data Report:
1987 LNG Vapor Barrier Verification Field Trials, Lawrence Livermore
National Laboratory, June 1990, UCRL-CR-104316.
[17] S. P. Arya, Introduction to Micrometeorology, Second ed., Academic
Press, 2001.
[18] H. A. Panofsky, J. A. Dutton, Atmospheric Turbulence: Models and
Methods for Engineering Applications, Wiley, New York, 1984.
[19] T. C. Brown, R. T. Cederwall, S. T. Chan, D. L. Ermak, R. P. Koopman,
K. C. Lamson, J. W. McClure, L. K. Morris, Falcon Series Data Report:
1987 LNG Vapor Barrier Verification Field Trials, Lawrence Livermore
National Laboratory, June 1990, UCRL-CR-104316.
[20] P. J. Richards, R. P. Hoxey, Appropriate Boundary Conditions for
Computational Wind Engineering Models using The k–Turbulence
Model, J. Wind Eng. Ind. Aerodynam. 46–47 (1993) 145–153.
[21] Regional Agency for Environmental Protection Bucharest, Integrated
Environmental Authorization for Grozavesti CHP, Nov. 2007, 17-20.
[22] G. Lazaroiu, Modeling and Simulating Combustion and Generation of
NOx, Fuel Processing Technology Volume: 88 Issue: 8 Pages: 771-777.
[23] V. Cenusa, H. Petcu, Electricity Production from Fossil Fuels,
Applications, 2005.
[24] Google Maps, (www.google.ro/maps/location), Bucharest, Grozavesti
CHP, Satellite view, 2014.
[25] H. W. Coleman, F. Stern, Uncertainties and CFD code validation, J.
Fluids Eng.119 (1997) 795–803.
[26] J. Tu, G. H. Yeoh, C. Liu, Computational Fluid Dynamics—A Practical
Approach, Butterworth–Heinemann, Oxford, UK, 2008.