Nonlinear Thermal Expansion Model for SiC/Al

The thermal expansion behaviour of silicon carbide (SCS-2) fibre reinforced 6061 aluminium matrix composite subjected to the influenced thermal mechanical cycling (TMC) process were investigated. The thermal stress has important effect on the longitudinal thermal expansion coefficient of the composites. The present paper used experimental data of the thermal expansion behaviour of a SiC/Al composite for temperatures up to 370°C, in which their data was used for carrying out modelling of theoretical predictions.




References:
[1] R. J. Arsenault. The Strengthening of Aluminium Alloy 6061 by Fibre
and Platelet Silicon Carbide. Materials Science and Engineering, 64
(1984) 171-181.
[2] Taya, Minoru, R.J. Arsenault. Metal Matrix Composites; Thermomechanical
behaviour. Pergamon Press (1989).
[3] Nan-Ming Yeh and Erhard Krempl. A Numerical Simulation of the
Effects of Volume fraction, Creep and Thermal Cycling on the
Behaviour of Fibrous Metal Matrix Composites. Journal of Composite
Materials. 26 no 6 (1992).
[4] B. Derby, Internal Stress Super-plasticity in metal matrix composites,
Scr. Metall., 19 (1985) 703-707.
[5] S. M. Hong. Internal Stress Super-plasticity in 2024 Al-SiC whiskers
reinforced composites, J. Compos. Mater., 22 (1985) 102.
[6] K. Wakashima, B. H. Choi and S.H. Lee, Metal Matrix Composites,
Proc. 3rd Jpn.-U.S. Conf. On Compoosite Materials, Tokyo, 1986, 1986,
pp. 579-587.
[7] J.C. Leflour and R. Locicero, Influence of internal stresses induced by
thermal cycling on the plastic deformation resistance of Al/SiC
composite material, Scr. Metall.,21 (1987) 1971 -1976.
[8] G. S. Daehn, Plastic deformation of continuous fiber reinforced
composites subjected to changing temperature, Scr. Metall., 21 (1989)
247-252.
[9] S. Yoda, N. Kurihara, K. Wakashima and S. Umekawa, Thermal
cycling induced deformation of fibrous composites with particular
reference to the tungsten copper system. Metall. Trans. A 9 (1978)
1229-1236.
[10] B.K. Min and F.W. Crossman, History dependent thermo-mechanical
properties of graphite aluminium unidirectional composites. Proc. 6th
ASTM Conf. On Composite Materials. Testing and Design in ASTM
Spec. Tech. Publ.787, 1982, pp. 371-392.
[11] E.G. Wolff, B.K. Min and M.M. Kural, Thermal cycling of a
unidirectional graphite-magnesium composite. J. Mater. Sci., 20 (1985)
1141-1149.
[12] Colclough, B. Dempster, Y. Favry and D. Valentin, Thermo-mechanical
behaviour of SiC-Al Composites, A 135 (1991) 203-207.
[13] H. Mykura, N. Mykura. Thermal Expansion and Stress Relaxation of
Metal Matrix Composites. Composites Science and Technology,
45(1992) 307-312.
[14] G. Neite, S. Mielke. Thermal expansion and dimensional stability of
alumina fibre reinforced aluminium alloys. Materials Science and
Engineering. A148 (1991) 85-92.
[15] C.S. Rao and G.S. Upadhyaya, 2014 and 6061 aluminium alloy based
powder metallurgy composites containing silicon carbide particle or
fibre. Mater. Design, 16 no. 6 (1995), pp. 359-366.
[16] Song Mei-hui, Xiu Zi Yang, Wu Gao Hui, Chen Guo Qin. Nonlinear
temperature characteristic of thermal expansion of Grf/Mg Composites.
Transaction Nonferrous Metals Society of China. 19(2009), pp. S382-
S386.
[17] D. Karalekas, E.E. Gdoutus, I.M. Daniel. Micromechanical Analysis of
Nonlinear Thermal Deformation of Filamentary metal matrix
composites. Computational Mechanics (1991) 9, pp. 17-26.
[18] D. Masutti, J.P. Lentz, F. Delannay. Measurement of internal stresses
and of the temperature dependence of the matrix yield stress in metal
matrix composites from thermal expansion curve. Journal of Material
Science Letters, 9(1990), pp. 340-342.
[19] E.E. Gdoutos, D. Karalekas, and I.M Daniel. Thermal Stress Analysis of
a Silicon Carbide/Aluminium Composite. Experimental Mechanics. Vol
31 (1991) no3, pp. 202-208.
[20] R.A Schapery. Thermal expansion coefficients of composite materials
based on energy principles. Journal of Composite Materials, 1968. Vol.
2 no 3, 380-404.
[21] W. Rosen, Z. Hashin. Effective thermal expansion coefficients and
specific heats of composite materials. International Journal of
Engineering Science. Vol. 8 no 2, pp. 157-173.