Nanocomputing Memory Devices Formed from Carbon Nanotubes and Metallofulleres

In this paper, we summarize recent work of the authors on nanocomputing memory devices. We investigate two memory devices, each comprising a charged metallofullerene and carbon nanotubes. The first device involves two open nanotubes of the same radius that are joined by a centrally located nanotube of a smaller radius. A metallofullerene is then enclosed inside the structure. The second device also involves a etallofullerene that is located inside a closed carbon nanotube. Assuming the Lennard-Jones interaction energy and the continuum approximation, for both devices, the metallofullerene has two symmetrically placed equal minimum energy positions. On one side the metallofullerene represents the zero information state and by applying an external electrical field, it can overcome the energy barrier, and pass from one end of the tube to the other, where the metallofullerene then represents the one information state.





References:
[1] G. E. Moore, "Progress in digital integrated electronics", Technical Digest International Electron Devices Meeting (1975), Vol. 21, pp.11-13.
[2] W. Arden and K. H. Muller, "Physical and technological limits in optical and x-ray lithography", Microelectron. Eng. (1987), Vol. 6, pp. 53-60.
[3] L. R. Harriott, "Limits of lithography", Proc. IEEE (2001), Vol. 89, pp. 366-374.
[4] T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy and M.
Rothschild, "22-nm immersion interference lithography". Optics Express
(2006), Vol. 14, pp. 6434-6443.
[5] S. E. Thompson and S. Parthasarathy S. "Moore's law: The future of Si
microelectronics", Materials Today (2006), Vol. 9, pp. 20-25.
[6] P. V. Kamat and L. M. Liz-marzan, "Nanoscale materials" in Nanoscale
Materials, Kluwer Academic Publishers, London, 2003.
[7] S. Iijima, "Helical microtubules of graphitic carbon", Nature (1991), Vol.
354, pp. 56-58.
[8] Y. K. Kwon, D. Tománek and S. Iijima, "Bucky shuttle memory device: Synthetic approach and molecular dynamics simulations", Phys. Rev. Lett., (1999), Vol. 82, No. 7, pp. 1470-1473.
[9] S. Xiao, D. R. Andersen and W. Yang, "Design and analysis of nanotube-based memory cells", Nanoscale Res. Lett. (2008), Vol. 3, pp. 416-420.
[10] J. Lee, H. Kim, S. J. Kahng, G. Kim, Y. W. Son, J. Ihm, H. Kato, Z. W.
Wang, T. Okazaki, H. Shinohara and Y. Kuk, "Bandgap modulation of
carbon nanotubes by encapsulated metallofullerenes", Nature, (2002), Vol. 415, pp. 1005-1008.
[11] J. W. Kang and H. J. Hwang, "Carbon nanotube shuttle memory device",
Carbon (2004), Vol. 42, pp. 3018-3021.
[12] Y. Chan, R. K. F. Lee and J. M. Hill, "Metallofullerenes in composite carbon nanotubes as a nanocomputing memory device", IEEE Trans.
Nanotechnol. (2011), Vol. 10, pp. 947-952.
[13] H. J. Hwang, K. R. Byun, J. Y. Lee and J. W. Kang, "A nanoscale field
effect data storage of bipolar endo-fullerenes shuttle device", Curr. Appl
Phys. (2005), Vol. 5, pp. 609-614.
[14] R. K. F. Lee and J. M. Hill, "Design of a two-state shuttle memory device", CMC: Computers, Materials & Continua (2010), Vol. 20, No. 1, pp. 85-100.
[15] L. A. Girifalco, M. Hodak and R. S. Lee, "Carbon nanotubes buckyballs
ropes and a universal graphitic potential", Phys. Rev. B (2000), Vol. 62,
pp. 13104-13110.
[16] B. J. Cox, N. Thamwattana and J. M. Hill, "Mechanics of atoms and
fullerenes in single-walled carbon nanotubes: I. Acceptance and suction
energies", Proc. R. Soc. London, Ser. A (2007), Vol. 463, pp. 461-476.
[17] G. Chen, Y. Guo, N. Karasawa and W. A. Goddard III, "Electron-phonon
interactions and superconductivity in K3C60", Phys. Rev. B (1993), Vol.
48, No. 18, pp. 13959.