Nano-Alumina Sulfuric Acid: An Efficient Catalyst for the Synthesis of α-Aminonitriles Derivatives

An efficient and green protocol for the synthesis of α-
aminonitriles derivatives by one-pot reaction of different aldehydes
with amines and trimethylsilyl cyanides has been developed using
natural alumina, alumina sulfuric acid (ASA), nano-γ-alumina, nanoalumina
sulfuric acid (nano-ASA) under microwave irradiation and
solvent-free conditions. The advantages of methods are short reaction
times, high yields, milder conditions and easy work up. The catalysts
can be recovered for the subsequent reactions and reused without any
appreciable loss of efficiency.





References:
<p>[1] R. O. Duthaler, Tetrahedron. 50 (1994) 1539-1650.
[2] H. Groger, Chem. Rev. 103 (2003) 2795-2827.
[3] S. Kobayashi, H. Ishitani, Chem. Rev. 99 (1999) 1069-1094.
[4] S. Nakamura, N. Sato, M. Sugimoto, T. Toru, Tetrahedron: Asymmetry
15 (2004) 1513-1516.
[5] S. Harusawa, Y. Hamada, T. Shioiri, Tetrahedron Lett. 20 (1979) 4663-
4666.
[6] A. S. Paraskar, A. Sudalai, Tetrahedron Lett. 47 (2006) 5759-5762.
[7] D. Enders, J. P. Shilvock, Chem. Soc. Rev. 29 (2000) 359&ndash;373.
[8] S. Kobayashi, H. Ishitani, Chem. Rev. 99 (1999) 1069&ndash;1094.
[9] K. Shen, X. H. Liu, Y. F. Cai, L. L. Lin, X. M. Feng, Chem. Eur. J. 15
(2009) 6008&ndash;6014.
[10] Z. F. Xie, G. L. Li, G. Zhao, J. D. Wang, Synthesis (2009) 2035&ndash;2039.
[11] F. Cruz-Acosta, A. Santos-Exposito, P. Armas, F. Garcia-Tellado,
Chem. Commun. 2009, 6839&ndash;6841.
[12] J. P. Abell, H. Yamamoto, J. Am. Chem. Soc. 131 (2009) 15118&ndash;15119.
[13] Sakshi Shah, Baldev Singh, Tetrahedron Letters 53 (2012) 151&ndash;156.
[14] Zheng Li, Yuanhong Ma, Jun Xu, Jinghong Shi, Hongfang Cai
Tetrahedron Letters 51 (2010) 3922&ndash;3926.
[15] B. C. Ranu, S. S. Dey, S. Hajra, Tetrahedron 58 (2002) 2529&ndash;2532.
[16] S. K. De, R. A. Gibbs, Tetrahedron Lett. 45 (2004) 7407&ndash;7408.
[17] Z. L. Shen, S. J. Ji, T. P. Loh, Tetrahedron 64 (2008) 8159&ndash;8163.
[18] A. Majhi, Sung Soo Kim, S. T. Kadam, Tetrahedron 64 (2008) 5509&ndash;
5514.
[19] S. K. De, J. Mol. Catal. A: Chem. 225 (2005) 169&ndash;171.
[20] M. North, Angew. Chem., Int. Ed. 43 (2004) 4126&ndash;4128.
[21] J.S. Yadav, B.V.S. Reddy, B. Eshwaraiah, New J. Chem. 27 (2003) 462-
465.
[22] J.S. Yadav, B.V.S. Reddy, B. Eswaraiah, Tetrahedron 60 (2004) 1767-
1771.
[23] W.Y. Chen, J. Lu, Synlett (2005) 2293-2296.
[24] B. Karimi, A. A. Safari, J. Organomet. Chem. 693 (2008) 2967&ndash;2970.
[25] Ezzat Rafiee, Solmaz Rashidzadeh, Alireza Azad, Journal of Molecular
Catalysis A: Chemical 261 (2007) 49&ndash;52.
[26] T. Rahi, M. Baghernejad, K. Niknam, Chin. J. Catal., 33 (2012) 1095&ndash;
1100.
[27] B. Karmakar, A. Sinhamahaparta, A. Baran Panda, J.Banerji, B.
Chowdhury, Applied Catalysis A: General, 392 (2011) 111-117.
[28] A. Teimouri, A. Najafi Chermahini, J. Mol. Catal A: Chem. 346 (2011)
39-45.
[29] H. Shargi, M. H. Sarvari, R. Eskandari, J. Chem. Res. (2005) 483-486.
[30] K.M. Parida, Amaresh C. Pradhan, J. Das, Nruparaj Sahu Mat. Chem.
Phys. 113 (2009) 244&ndash;248.
[31] B.D. Cullity, S.R. Stock, Elements Of X-Ray Diffraction, Third Edition
Prentice Hall, Upper Saddle River, NJ, 2001 Pp. 388.</p>