Mutational Effect to Particular Interaction Energy of Cycloguanil Drug to Plasmodium Plasmodium Falciparum Dihydrofolate Reductase Enzymes

In order to find the particular interaction energy between cylcloguanil and the amino acids surrounding the pocket of wild type and quadruple mutant type PfDHFR enzymes, the MP2 method with basis set 6-31G(d,p) level of calculations was performed. The obtained interaction energies found that Asp54 has the strongest interaction energy to both wild type and mutant type of - 12.439 and -11.250 kcal/mol, respectively and three amino acids; Asp54, Ile164 and Ile14 formed the H-bonding with cycloguanil drug. Importantly, the mutation at Ser108Asn was the key important of cycloguanil resistant with showing repulsive interaction energy.




References:
[1] P. L. Olliaro, and Y. Yuthavong, "An overview of chemotherapeutic
targets for antimalarial drug discovery," Pharmacol. Ther., vol. 81, pp.
91-110, 1999.
[2] Y. Yuthavong, S. Kamchonwongpaisan, U. Leartsakulpanich and P.
Chitnumsub, "Folate Metabolism as a Source of Molecular Targets for
Antimalarials," Future Microb. vol. 1, no.1, pp. 113-125, 2006.
[3] A. Nzila, "Inhibitors of De-novo Folate Enzymes in Plasmodium
falciparum," Drug Discov. Today, vol. 11, pp. 936-944, 2006.
[4] K.Militello, M. Dodge, L. Bethke and D. F. Wirth, "Identification of
regulatory elements in the Plasmodium falciparum genome," Mol.
Biochem. Parasitol, vol. 134, pp. 75-88, 2004.
[5] T. Dasgupta, and K. S. Anderson, "Probing the Role of Parasite-
Specific, Distant Structural Regions on Communication and Catalysis in
the Bifunctional Thymidylate Synthase- Dihydrofolate Reductase from
Plasmodium falciparum," Biochemistry, vol. 47, no. 5, pp. 1336-1345,
2008.
[6] A. Nzila, "The Past, Present and Future of Antifolates in the Treatment
of Plasmodium falciparum Infection," J. Antimicrob Chemother, vol. 57,
pp. 1043-1054, 2006.
[7] R.T. Delfino, O. A. Santos-Filho and J. D. Figueroa-Villar, "Type 2
antifolates in the chemotherapy of falciparum malaria," J. Braz. Chem.
Soc. vol. 13, pp. 727-741, 2002.
[8] Y. Yuthavong, "Basic for antifolate action and resistance in malaria.
Microbes Infect," vol. 4, pp. 175-182, 2002.
[9] Y. Yuthavong, J. Yuvaniyama, P. Chitnumsub, J. Vanichtanankul, S.
Chusacultanachai, B. Tarnchompoo, T. Vilaivan and S.
Kamchonwongpaisan, "Malarial (Plasmodium falciparum) dihydrofolate
reductase-thymidylate synthase: structural basis for antifolate resistance
and development of effective inhibitors," Parasitology, vol. 130, pp.
249-259, 2005.
[10] L. K. Basco, P. E. Pecoulas, C. M. Wilson, J. L. Bras and A. Mazabraud,
"Point mutations in the dihydrofolate reductase-thymidylate synthase
gene and pyrimethamine and cycloguanil resistance in Plasmodium
falciparum," Mol. Biochem. Parasitol, vol. 69, pp. 135-138, 1995.
[11] D. S. Peterson, W. K. Milhous and T. E. Wellems, "Molecular basis of
differential resistance to cycloguanil and pyrimethamine in Plasmodium
falciparum malaria," Proc. Natl. Acad. Sci. U.S.A., vol. 87, pp. 3018-
3022, 1990.
[12] A. Gregson, and C.V. Plowe, "Mechanisms of Resistance of Malaria
Parasites to Antifolates," Pharmacol. Rev. vol. 57, pp. 117-145, 2005.
[13] I. M. Hastings, and M. J. Donnelly, "The impact of antimalarial drug
resistance mutations on parasite fitness, and its implications for the
evolution of resistance," Drug Resist. Updat, vol. 8, pp. 43-50, 2005.
[14] G.Rastelli, S. Sirawaraporn, P. Sompornpisut, T. Vilaivan, S.
Kamchonwongpaisan, R. Quarrell, G. Lowe, Y. Thebtaranonth and Y.
Yuthavong, "Interaction of pyrimethamine, cycloguanil, WR99210 and
their analogues with Plasmodium falciparum dihydrofolate reductase:
structural basis of antifolate resistance," Bioorg. Med. Chem. vol. 8, pp.
1117-1128, 2000.
[15] W. Sirawaraporn, T. Sathitkul, R. Sirawaraporn, Y. Yuthavong and
D.V. Santi, "Antifolate-resistant mutants of plasmodium falciparum
dihydrofolate reductase," Proc. Natl. Acad. Sci. vol. 94, pp. 1124-1129,
1997.
[16] J. Yuvaniyama, P. Chitnumsub, S. Kamchonwongpaisan, J.
Vanichtanankul, S. Sirawaraporn, P. Taylor, M. D. Walkinshaw and Y.
Yuthavong, "Insights into antifolate resistance from malarial DHFR-TS
structures," Nat. Struct. Bio,. vol. 10, pp. 357-365, 2003.
[17] G. B. Fogel, M. Cheung, E. Pittman and D. Hecht, "Modeling the
inhibition of quadruple mutant Plasmodium falciparum dihydrofolate
reductase by pyrimethamine derivatives," J. Comput Aided Mol Des,
vol. 22, pp. 29-38, 2008.
[18] S. Kamchonwongpaisan, R. Quarrell, N. Charoensetakul, R. Ponsinet, T.
Vilaivan, J. Vanichtanankul, B. Tarnchompoo, W. Sirawaraporn, G.
Lowe and Y. Yuthavong, "Inhibitors of multiple mutants of plasmodium
falciparum dihydrofolate reductase and their antimalarial activities," J.
Med. Chem, vol. 47, pp. 673-680, 2004.
[19] M. D. Parenti, S. Pacchioni, A. M. Ferrari, and G. Rastelli, "Three-
Dimensional Quantitative Structure-Activity Relationship Analysis of a
Set of Plasmodium falciparum Dihydrofolate Reductase Inhibitors Using
a Pharmacophore Generation Approach," J. Med. Chem, vol. 47, pp.
4258-4267, 2004.
[20] P. Maitarad, P. Saparpakorn, , S. Hannongbua, S. Kamchonwongpaisan,
B. Tarnchompoo, Y. Yuthavong, "Particular Interaction between
Pyrimethamine Derivatives and Quadruple Mutant Type Dihydrofolate
Reductase of Plasmodium falciparum: CoMFA and Quantum Chemical
Calculations Studies," J. Enzyme. Inhibition and Medicinal Chemistry,
2008, in press.