Modelling of Hydric Behaviour of Textiles

The goal of this study is to analyze the hydric behaviour of textiles which can impact significantly the comfort of the wearer. Indeed, fabrics can be adapted for different climate if hydric and thermal behaviors are known. In this study, fabrics are only submitted to hydric variations. Sorption and desorption isotherms obtained from the dynamic vapour sorption apparatus (DVS) are fitted with the parallel exponential kinetics (PEK), the Hailwood-Horrobin (HH) and the Brunauer-Emmett-Teller (BET) models. One of the major finding is the relationship existing between PEK and HH models. During slow and fast processes, the sorption of water molecules on the polymer can be in monolayer and multilayer form. According to the BET model, moisture regain, a physical property of textiles, show a linear correlation with the total amount of water taken in monolayer. This study provides potential information of the end uses of these fabrics according to the selected activity level.





References:
[1] C. A. Hill, B.A. Keating, Z. Jalaludin, E. Mahrdt, “A rheological description of the water vapour sorption kinetics behaviour of wood invoking a model using a canonical assembly of Kelvin-Voigt elements and a possible link with sorption hysteresis”, Holzforschung, 2012, 66, 35-47.
[2] C.-M. Popescu, C. Hill, S. Curling, G. Ormondroyd, Y. Xie, “The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content” Journal of Materials Science, 2014, 49.
[3] Y. Xie, C.A Hill, Z. Xiao, Z. Jalaludin, H. Militz, C. Mai, “Water vapor sorption kinetics of wood modified with glutaraldehyde”, Journal of applied polymer science, 2010, 117, 1674-1682.
[4] C.A. Hill, A. Norton, G. Newman, “The water vapor sorption behavior of natural fibers”, Journal of Applied Polymer Science, 2009, 112, 1524-1537.
[5] C.A. Hill, A. Norton, G. Newman, “The water vapor sorption behavior of flax fibers—Analysis using the parallel exponential kinetics model and determination of the activation energies of sorption”, Journal of applied polymer science, 2010, 116, 2166-2173.
[6] C.A. Hill, Y. Xie, “The dynamic water vapour sorption properties of natural fibres and viscoelastic behaviour of the cell wall: is there a link between sorption kinetics and hysteresis ?”, Journal of materials science, 2011, 46, 3738-3748.
[7] R. Kohler, R. Dück, B. Ausperger, R. Alex, “A numeric model for the kinetics of water vapor sorption on cellulosic reinforcement fibers”, Composite Interfaces, 2003, 10, 255-276.
[8] S. Okubayashi, U.J. Griesser, T. Bechtold, “Moisture sorption/desorption behavior of various manmade cellulosic fibers”, Journal of applied polymer science, 2005, 97, 1621-1625.
[9] S. Okubayashi, U.J Griesser, T. Bechtold, “A kinetic study of moisture sorption and desorption on lyocell fibers”, Carbohydrate Polymers, 2004, 58, 293-299.
[10] K. Kachrimanis, M. Noisternig, U. Griesser, S. Malamataris, “Dynamic moisture sorption and desorption of standard and silicified microcrystalline cellulose”, European journal of pharmaceutics and biopharmaceutics, 2006, 64, 307-315.
[11] G.A. Ormondroyd, S.F. Curling, E. Mansour, C.A. Hill, “The water vapour sorption characteristics and kinetics of different wool types”, The Journal of The Textile Institute, 2017, 108, 1198-1210.
[12] Ö. Ceylan, F. Goubet, K. Clerck, “Dynamic moisture sorption behavior of cotton fibers with natural brown pigments”, Cellulose, 2014, 21.
[13] C.A. Hill, A.J. Norton, G. Newman, “The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus”, Wood Science and Technology, 2010, 44, 497-514.
[14] Z. Jalaludin, C.A. Hill, H.W. Samsi, H. Husain, Y. Xie, “Analysis of water vapour sorption of oleo-thermal modified wood of Acacia mangium and Endospermum malaccense by a parallel exponential kinetics model and according to the Hailwood-Horrobin model”, Holzforschung, 2010, 64, 763-770.
[15] J. Zaihan, C. Hill, S. Curling, W. Hashim, H. Hamdan, “The kinetics of water vapour sorption: analysis using parallel exponential kinetics model on six Malaysian hardwoods”, Journal of Tropical Forest Science, 2010, 107-117.
[16] B. Siroka, M. Noisternig, U.J Griesser, T. Bechtold, “Characterization of cellulosic fibers and fabrics by sorption/desorption”, Carbohydrate research, 2008, 343, 2194-2199.
[17] R.M. Syamaladevi, S.S. Sablani, J. Tang, J. Powers, B.G. Swanson, “Water sorption and glass transition temperatures in red raspberry (Rubus idaeus)”, Thermochimica Acta, 2010, 503, 90-96.
[18] C.A. Hill, J. Moore, Z. Jalaludin, M. Leveneu, E. Mahrdt, “Influence of earlywood/latewood and ring position upon water vapour sorption properties of Sitka spruce”, International Wood Products Journal, 2011, 2, 12-19.
[19] J. Zaihan, C. Hill, S. Curling, W. Hashim, H. Hamdan, “Moisture adsorption isotherms of Acacia mangium and Endospermum malaccense using dynamic vapour sorption”, Journal of Tropical Forest Science, JSTOR, 2009, 277-285.
[20] Y. Xie, C.A. Hill, Z. Jalaludin, D. Sun, “The water vapour sorption behaviour of three celluloses: analysis using parallel exponential kinetics and interpretation using the Kelvin-Voigt viscoelastic model”, Cellulose, 2011, 18, 517-530.
[21] C.-M. Popescu, C.A. Hill, “The water vapour adsorption--desorption behaviour of naturally aged Tilia cordata Mill. Wood”, Polymer degradation and stability, 2013, 98, 1804-1813.
[22] C.A. Hill, J. Ramsay, B. Keating, K. Laine, L. Rautkari, M. Hughes, B. Constant, “The water vapour sorption properties of thermally modified and densified wood”, Journal of Materials Science, 2012, 47, 3191-3197.
[23] S. Mali, L. Sakanaka, F. Yamashita, M. Grossmann, “Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect”, Carbohydrate Polymers, 2005, 60, 283-289.