Modeling, Analysis and Simulation of 4-Phase Boost Converter

This paper designs the four-phase Boost Converter
which overcomes the problem of high input ripple current and output
ripple voltage. Digital control is more convenient for such a topology
on basis of synchronization, phase shift operation, etc. Simulation
results are presented for open-loop and closed-loop for four phase
boost converter. This control scheme is applicable for PFC rectifiers
as well. Thus a comparative analysis based on the obtained results is
performed.





References:
[1] R. Mirzaei and V. Ramanarayanan, “Polyphase Boost Converter for
Automotive and UPF Applications with Digital Control.” National
Power Electronics Conference, NPEC 2005.
[2] R.Redl and L.Balogh, “Power-factor correction with interleaved boost
converters continuous-inductor-current mode.” in Proc. APEC’93,
pp.168–174.
[3] R.Redl and L.Balogh, “RMS, DC, Peak, and Harmonic Currents in
High-Frequency Power-Factor Correctors with Capacitive Energy
Storage.” in Proc. APEC 1992 pp 533-540.
[4] R. Giral, L. Martinez-Salamero and S. Singer,”Interleaved Converters
Operation Based on CMC.” IEEE Trans Power Electron, vol. 14, no. 4,
Jul 1999.
[5] I. Cadirci, A. Yafavi and M. Ermis, “Unity power factor boost converter
with phase shifted parallel IGBT operation for medium power
applications.” IEE. Proc.-Electr. Power Appl. Vol.149, No. 3, May 2002.
[6] D. Maksimovic, R. Zane, and R. Erickson, “Impact of Digital Control in
Power Electronics.” IEEE International Symposium on Power
Semiconductor Devices &Ics Kitakyushu, Japan, May 2004.
[7] J. Chen, A. Prodic, R. Erickson and D. Maksimovic, “Predictive Digital
Current Programmed Control.” IEEE Trans.Power Electron.,vol. 18, no.
1, Jan 2003, pp. 411- 419.
[8] S. Chattopadhyay and S. Das, “A Digital Current Mode Control
Technique for DC-DC Converters” in Proc. APEC 2005, Vol. 2, pp.
885-891.
[9] R.D. Middlebrook, S.C. Cuk, "Advance in Switched Mode Power
Conversion.” TeslaCO, Pasadena, USA, 1983.
[10] P. Li and B. Lehman, “A design method for paralleling current mode
controlled DC-DC converters,” IEEE Trans. on Power Electron., vol. 19,
no. 3, May 2004.
[11] Y. Panov, and M.M. Jovanovic, “Stability and dynamic performance of
current sharing control for paralleled voltage regulator modules”, IEEE
Trans. Power Electron., vol. 17, no. 2, March 2002.
[12] K. M. Smith and K. M. Smedley, “A comparison of active and passive
soft switching methods for PWM converters”, Proc. IEEE PESC 1998,
pp. 94–100.
[13] G. Moschopoulos, P. Jain, and G. Joós, “A novel zero-voltage switched
PWM boost converter”, Proc. IEEE PESC 1995, pp. 694–700.
[14] G. Moschopoulos, P. Jain, Y.-F. Liu, and G. Joós, “A zero-voltage
switched PWM boost converter with an energy feed forward auxiliary
circuit.” Proc. IEEE PESC 1996, pp. 76–82.
[15] C. M. C. Duarte and I. Barbi, “A new family of ZVS-PWM active
clamping dc-to-dc converters: Analysis, design, and experimentation”,
Proc. INTELEC 1996, pp. 305-312.
[16] M. M. Jovanovic´, “A technique for reducing rectifier reverse-recovery
related losses in high-voltage, high-power boost converters”, Proc. IEEE
APEC 1997, pp. 1000–1007
[17] K. M. Smith and K. M. Smedley, “A comparison of voltage-mode soft
switching methods for PWM converters,” IEEE Trans. Power Electron.,
vol. 12, no. 2, Mar. 1997
[18] C. J. Tseng and C.-L. Chen, “Novel ZVT-PWM converters with active
snubbers.”, IEEE Trans. Power Electron., vol. 13, no. 5, Sep. 1998
[19] M. M. Jovanovic´ and Y. Jang, “A new soft-switched boost converter
with isolated active snubber”, Proc. IEEE APEC 1998, pp. 1084–1090.
[20] T.-W. Kim, H.-S. Kim, and H.-W. Ahn, “An improved ZVT PWM
converter.” Proc IEEE PESC 2000, pp. 615–619.
[21] N. Jain, P. Jain, and G. Joós, “Analysis of a zero-voltage transition boost
converter using a soft switching auxiliary circuit with reduced
conduction losses”, Proc. IEEE PESC 2001, pp. 1799–1804
[22] B. Feng and D. Xu, “1 kW pfc converter with compounded activeclamping”,
Proc IEEE PESC 2002, pp. 1387–1391
[23] C. A. Canesin and I. Barbi, “Comparison of experimental loses among
six different topologies for a 1.6 kW boost converter, using IGBT’s”,
Proc. IEEE PESC 1995, pp.1265–1271.
[24] M. Veerachary, ‘‘Analysis of interleaved dual boost converter with
integrated magnetics: signal flow graph approach’’, IEE Proceedings
Electrical Power Applications, 150, pp. 407–416, 2003.
[25] P.A. Dahono, S. Riyadi, A. Mudawari and Y. Haroen, ‘‘Output ripple
analysis of multiphase DC–DC converter’’. IEEE PEDS 1999, pp. 626–
631, 1999.
[26] M. Veerachary, T. Senjyu and K. Uezato, ‘‘Maximum power point
tracking of coupled inductor interleaved boost converter supplied PV
system’’, IEE Proceedings of Electrical Power Applications, 150, pp.
71–80, 2003.
[27] P. Lee, Y. Lee, D.K.W. Cheng and X. Liu, ‘‘Steady-state analysis of an
interleaved boost converter with coupled inductors’’, IEEE Trans. Ind.
Electron., vol. 47, no. 4, Aug.2000.
[28] C. M. Wang, “A New Single-Phase ZCS-PWM Boost Rectifier with
High Power Factor and Low Conduction Losses.” IEEE Trans. Ind.
Electron. vol. 53 no. 2 April 2006.
[29] Kelly, A. and Rinne, K., “Sensor less current-mode control of a digital
dead-beat DC-DC converter”, Proc. IEEE APEC 2004, vol. 3, pp. 1790-
1795.
[30] D.S. Padimiti and M. Ferdowsi, “Review of Digital Control Techniques
for Automotive DC-DC Converters.” IEEE Vehicle Power and
Propulsion, Sept. 2005