MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

This paper deals with the theoretical and numerical
investigation of magneto hydrodynamic boundary layer flow of a
nanofluid past a wedge shaped wick in heat pipe used for the cooling
of electronic components and different type of machines. To
incorporate the effect of nanoparticle diameter, concentration of
nanoparticles in the pure fluid, nanothermal layer formed around the
nanoparticle and Brownian motion of nanoparticles etc., appropriate
models are used for the effective thermal and physical properties of
nanofluids. To model the rotation of nanoparticles inside the base
fluid, microfluidics theory is used. In this investigation ethylene
glycol (EG) based nanofluids, are taken into account. The non-linear
equations governing the flow and heat transfer are solved by using a
very effective particle swarm optimization technique along with
Runge-Kutta method. The values of heat transfer coefficient are
found for different parameters involved in the formulation viz.
nanoparticle concentration, nanoparticle size, magnetic field and
wedge angle etc. It is found that, the wedge angle, presence of
magnetic field, nanoparticle size and nanoparticle concentration etc.
have prominent effects on fluid flow and heat transfer characteristics
for the considered configuration.


Authors:



References:
[1] A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, 1994.
[2] S. Choi, J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles. In Developments and Applications of Non-Newtonian Flows,” Edited by Siginer DA, Wang HP. New York: American Society of Mechanical Engineers, 1995, pp. 99–105.
[3] X-Q Wang, A. S. Majumdar, “Heat transfer characteristics of nanofluids: a review,” Int J Thermal Sci, 2007, vol. 46, pp. 1–19.
[4] X-Q Wang, A. S. Majumdar, “A review on nanofluids - part I: theoretical and numerical investigations,” Braz J ChemEng, 2008, vol. 25(4), pp. 613–630.
[5] W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model,” J Nanoparticle research, 2003, vol. 5, pp. 167-171.
[6] M. Corcione, “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids,” Energy Convers Manage, 2011, vol. 52, pp. 789–793.
[7] Z. Uddin and S. Harmand, “Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium,” Nanoscale Research Letters, 2013, 8:64.
[8] Mohsen Sheikholeslami, Shirley Abelman and DavoodDomiriGanji, “Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation,” International Journal of Heat and Mass Transfer, 2014, vol. 79, pp. 212–222.
[9] M. Shafahi, V. Bianco, K. Vafai, O. Manca, “An investigation of the thermal performance of cylindrical heat pipes using nanofluids,” Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 376–383.
[10] Liu Zhen-Hua, Li, Yuan-Yang, “A new frontier of nanofluid research – Application of nanofluids in heat pipes,” International Journal of Heat and Mass Transfer, 2012, Vol.55(23-24), pp.6786-6797.
[11] Z. Uddin and M. Kumar, “Hall and ion-slip effect on MHD boundary layer flow of a micro polar fluid past a wedge,” ScientiaIranica B, 2013, vol. 20 (3), pp. 467–476.
[12] R. Poli,J. Kennedy, T. Blackwell, Particle swarm optimization An overview, Swarm Intell, DOI 10.1007/s11721-007-0002-0, (2007).