Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto γ-Alumina and Bio-Char

Catalytic combustion of methane is imperative due to
stability of methane at low temperature. Methane (CH4), therefore,
remains unconverted in vehicle exhausts thereby causing greenhouse
gas GHG emission problem. In this study, heterogeneous catalysts of
palladium with bio-char (2 wt% Pd/Bc) and Al2O3 (2wt% Pd/ Al2O3)
supports were prepared by incipient wetness impregnation and then
subsequently tested for catalytic combustion of CH4. Support-porous
heterogeneous catalytic combustion (HCC) material were selected
based on factors such as surface area, porosity, thermal stability,
thermal conductivity, reactivity with reactants or products, chemical
stability, catalytic activity, and catalyst life. Sustainable and
renewable support-material of bio-mass char derived from palm shell
waste material was compared with those from the conventional
support-porous materials. Kinetic rate of reaction was determined for
combustion of methane on Palladium (Pd) based catalyst with Al2O3
support and bio-char (Bc). Material characterization was done using
TGA, SEM, and BET surface area. The performance test was
accomplished using tubular quartz reactor with gas mixture ratio of
3% methane and 97% air. The methane porous-HCC conversion was
carried out using online gas analyzer connected to the reactor that
performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc
is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity
between particles. The order of catalyst activity based on kinetic rate
on reaction of catalysts in low temperature was 2wt%
Pd/Bc>calcined 2wt% Pd/ Al2O3> 2wt% Pd/ Al2O3>calcined 2wt%
Pd/Bc. Hence agro waste material can successfully be utilized as an
inexpensive catalyst support material for enhanced CH4 catalytic
combustion.





References:
[1] IPCC, “Summary for Policymakers. In: Climate Change 2007: The
Physical Science Basis”. Cambridge: Cambridge University Press. 2007.
[2] T. Philippe T. Catalytic Combustion of Methane. Doctor Philosophy,
Kungliga Tekniska Högskolan, Stockholm. 2002..
[3] G. Guoqing, K. Kusakabe, M. Taneda, M. Uehara and H. Maeda. J.
Chem. Eng. 144: 270-276. 2008.
[4] X. H. Wang, G. Z. Guo, Y. Lu, L. Z. Hu, Y.L. Jiang, Z. Guo, and G.
Zhang. Catal. Today, 126:369–374. 2007.
[5] A. M. Fadzil and U. A. M. Hakimi. Utilization of biomass residues for
optimization of municipal solid waste combustion, Proceedings of the
Advances in Malaysian Energy Research, pp. 9–16. 2004.
[6] J. Lehmann, S. Joseph. Biochar for environmental management.
Washinto, Earthscan. 2009.
[7] M. Gurratha, T. Kuretzkya, H. P. Boehm, L. B. Okhlopkova, A.S.
Lisitsyn, V. A. Likholobov. Carbon. 38:1241-1255. 2000.
[8] E. Koichi and A. Hiromichi. Appl. Catal. A. 222, 359–367. 2001.
[9] O. Demoulin, G. Rupprechter, I. Seunier, B. Le Clef, M. Navez, and P.
Ruiz. J. Phys. Chem. B. 109, 20454-20462. 2005.
[10] N.S. Nasri and A. Abdul Kadir. Carbon Dioxide Adsorption and
Desorption on Pre-treated Hydrophilic Property on Sustainable Pyrolysis
Material of Bio-solid Waste, Universiti Teknologi Malaysia. 2012.
[11] N. S. Nasri, J. M. Jones, V. A. Dupont, and A. Williams. A Comparative
Study of Sulfur Poisoning and Regeneration of Precious-Metal
Catalysts. Energy & Fuels. 12(6), 1130-1134. 1998.
[12] Z. Khan, S. Yusupand M. M. Ahmad. Thermogravimetric Analysis of
Palm Oil Wastes Decomposition. 2011 Ieee First Conference On Clean
Energy And Technology Cet. 27-29 June. Kuala Lumpur, Malaysia:
IEEE, 205-208. 2011.
[13] O. Demoulin, G. Rupprechter, I. Seunier, B. Le Clef, M. Navezand P.
Ruiz. Investigation of Parameters Influencing the Activation of a Pd/Γ-
Alumina Catalyst during Methane Combustion. J. Phys. Chem. 109,
20454-20462. 2005.
[14] F. Rodriguez-Reinosoand M. M. Sabio. Textural and Chemical
Characterization of Microporous Carbons. Advances in Colloid and
Interface Science. 76-77, 271-294. 1998.
[15] Y. Chin and D.E. Resasco. Catalytic Oxidation of Methane on
Supported Palladium under Lean Conditions: Kinetics, Structure and
Properties. Catalysis. 14, 1-39. 1999.