Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links

We model and simulate the combined effect of fiber
dispersion and frequency chirp of a directly modulated high-speed
laser diode on the figures of merit of a non-amplified 40-Gbps optical
fiber link. We consider both the return to zero (RZ) and non-return to
zero (NRZ) patterns of the pseudorandom modulation bits. The
performance of the fiber communication system is assessed by the
fiber-length limitation due to the fiber dispersion. We study the
influence of replacing standard single-mode fibers by non-zero
dispersion-shifted fibers on the maximum fiber length and evaluate
the associated power penalty. We introduce new dispersion
tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps
optical fiber links.





References:
[1] H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode
VCSEL with lateral optical feedback of slow light,” IEICE Electron.
Express, vol. 8, July 2011, pp. 1075–1081.
[2] K. Petermann, Laser diode modulation and noise. Kluwer Academic
Publishers, Dordrecht, 1988.
[3] K. Sato, S. Kuwahar, and Y. Miyamoto, “Chirp characteristics of 40-
Gb/s directly modulated distributed-feedback laser diodes,” J. Lightwave
Technol., vol. 23, Nov. 2005, pp. 3790-3797.
[4] K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlowe, J.
Mork, D. Birkedal, J. M. Hvan, and J. Hanberg, “Low-jitter and highpower
40-GHz all-active mode-locked lasers,” IEEE Photon.
Technno.Lett.,vol. 16, April 2004, pp. 975-977.
[5] ITU-T draft recommendation G. 693, “Optical interfaces for intra-office
systems,” 2001.
[6] C. H. Henry, “Phase noise in injection lasers,” IEEE J. Lightwave
Technol., vol. LT-4, March 1986, pp. 298–311.
[7] M. Ahmed, “Spectral lineshape and noise of semiconductor lasers under
analog intensity modulation,” J. Phys. D., vol. 41, Aug. 2008, 175104
(10pp).
[8] G. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons
Inc., New York , 2002.
[9] M. F. Ahmed, A. H. Bakry and F. T. Albelady, “Digital Modulation
Characteristics of High-Speed Semiconductor Laser for Use in Optical
Communication Systems,” Arab. J. Sci. Eng., vol. 39, April 2014, pp.
5745 – 5752.
[10] T. L. Koch, and J. E. Bowers, “Nature of wavelength chirping in directly
modulated semiconductor lasers,” Electron. Lett., vol. 20, Dec. 1984, pp.
1038 -1039.
[11] K. Y. Lau, “Gain switching of semiconductor injection lasers,” J.Appl
Phys. Lett., vol. 52, Jan. 1988, pp. 257-259.
[12] H. F. Liu, S. Oshiba, Y. Ogawa and Y. Kawai, “Method of Generating
Nearly Transform-Limited Pulses from Gain-Switched Distributed-
Feedback Laser Diodes and Its Application to Soliton Transmission”,
Opt. Lett., vol. 17, Jan. 1992, pp. 64 – 66.
[13] E. Peral, W. K. Marshall, and A. Yariv, “Precise measurement of
semiconductor laser chirp using effect of propagation in dispersive fiber
and application to simulation of transmission through fiber gratings,” J.
Lightwave Technol., vol. 16, Oct. 1998, pp. 1874-1880.
[14] A. Villafranca, J. Lasobras, and I. Garcés, “Precise characterization of
the frequency chirp in directly modulated DFB laser,” Prec. 6th Spa.
Conf. Electron. Dev. Madrid, 2007, pp. 173 - 176.
[15] O. Boukari, L.Hassine, O.Latry, M. Ketata, and H. Bouchriha.
“Characterization of the chirp in semiconductor laser under modulation,”
J. Mat. Sci. Eng. C, vol. 28, July 2009, pp. 671–675.
[16] P. Krehlik “Directly modulated lasers in negative dispersion fiber links,”
Opto-Electron. Rev., vol. 15, June 2007, pp 71-77.
[17] M. Ahmed, “Modeling and simulation of dispersion-limited fiber
communication systems employing directly modulated laser diodes,”
Indian J. Phys., vol. 86, Nov. 2012, pp. 1013-1020.
[18] S. Balle, M. Homar, and M. S. Miguel, “Statistical properties of the
spectrum of light pulses in fast pseudorandom word modulation of a
single-mode semiconductor laser,” IEEE J. Quantum Electron., vol. 31,
Aug. 1995, pp. 1401-1408.
[19] A. Yin, L. Li, and X. Zhang, “Analysis of modulation format in the 40
Gbit/s optical communication system,” Optik - Intl. J. Light and
Electron. Opt., vol. 121, Sept. 2010, pp. 1550-1557.
[20] D. Liu, L. Wang, and J.-J. He, “Rate equation analysis of high speed Qmodulated
semiconductor laser,” J. Lightwave Technol., vol. 28, Sept.
2010, pp. 3128-3135.
[21] M. Ahmed, S. Mahmoud, and A. Mahmoud, “Influence of
pseudorandom bit format on the direct modulation performance of
semiconductor lasers,” Pramana J. Phys., vol. 79, Dec. 2012, pp. 1443-
1456.
[22] M. Ahmed, S. W. Z. Mahmoud, and A. A. Mahmoud, “Comparative
study on modulation dynamic characteristics of laser diodes using RZ
and NRZ bit formats,” Int. J. of Num. Model., vol. 27, May 2013, pp.
138-152.
[23] M. Ahmed, M. Yamada, and S. W. Z. Mahmoud, “Analysis of
semiconductor laser dynamics under gigabit rate modulation,” J. Appl.
Phys., vol. 101 , Feb. 2007, pp. 3119-3126.
[24] M. Ahmed, “Influence of transmission bit rate on performance of optical
fiber communication systems with direct modulation of laser diodes,” J.
Phys. D, vol. 42, Sept. 2009, pp. 185104-185111.
[25] M. Ahmed and A. El-Lafi, “Analysis of small-signal intensity
modulation of semiconductor lasers taking account of gain suppression,”
Pramana J. Phys., vol. 71, July 2008, pp.99-115.
[26] S. W. Z. Mahmoud, M. Ahmed, and R. Michalzik, “Influence of optical
feedback-induced phase on turn-on dynamics of vertical-cavity surfaceemitting
lasers,” Proc. 46th IEEE Midwest Symp. Circuit. Syst.
(MWSCAS’2003), Cairo, Dec. 2004, pp. 1354-1358.
[27] M. Ahmed, "Numerical approach to field fluctuations and spectral lineshape in InGaAsP laser diodes", Intl. J. Numer. Model.Simul.Vol. 17, March 2004, pp. 147-163.
[28] I. Kim, T. J. Miller, and Y. K. Park, “10-Gb/s transmission using 1.3-μm
low-chirp high-power directly modulated, packaged DFB laser module
for short distance (<50 km) applications,” IEEE Photon. Technol. Lett. ,
vol. 9, Aug. 1997, pp. 1167-1169.
[29] I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano,
and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated
signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol.
Lett., vol. 13, Jul. 2001, pp. 735-737.