Increase Energy Savings with Lighting Automation Using Light Pipes and Power LEDs

Using of natural lighting has come into prominence in
constructed buildings, especially in last ten years, under scope of
energy efficiency. Natural lighting methods are one of the methods
that aim to take advantage of day light in maximum level and
decrease using of artificial lighting. Increasing of day light amount in
buildings by using suitable methods will give optimum result in
terms of comfort and energy saving when the daylight-artificial light
integration is ensured with a suitable control system. Using of natural
light in places that require lighting will ensure energy saving in great
extent. With this study, it is aimed to save energy used for purpose of
lighting. Under this scope, lighting of a scanning laboratory of a
hospital was realized by using a lighting automation containing
natural and artificial lighting. In natural lighting, light pipes were
used and in artificial lighting, dimmable power LED modules were
used. Necessity of lighting was followed with motion sensors. The
lighting automation containing natural and artificial light was ensured
with fuzzy logic control. At the scanning laboratory where this
application was realized, energy saving in lighting was obtained.





References:
<p>[1] F. D. Aykal, B. G&uuml;m&uuml;ş and Y.B. &Ouml;zbudak Ak&ccedil;a, &ldquo;S&uuml;rd&uuml;r&uuml;lebilirlik
kapsamında yenilenebilir ve etkin enerji kullanımının yapılarda
uygulanması&rdquo;, V. Yenilenebilir Enerji Kaynakları Sempozyumu
YEKSEM&rsquo;09, Diyarbakır- T&uuml;rkiye, 19-22 Haziran 2009, s. 78-83.
[2] C. Baroncini, O. Boccia, F. Chella and P. Zazzini, &ldquo;Experimental
analysis on a 1:2 scale model of the double light pipe, an innovative
technological device for daylight transmission&rdquo;, Solar Energy, v. 84, pp.
296-307, 2010.
[3] M. Kocifaj, F. Kundracik, S. Darula and R. Kitler, &ldquo;Availability of
luminous flux below a bended light-pipe: Design modelling under
optimal daylight conditions&rdquo;, Solar Energy, v. 86, pp. 2753-2761, 2012.
[4] D. H.W. Li , E. K.W. Tsang, K.L. Cheung and C.O. Tam, &ldquo;An analysis
of light-pipe system via full-scale measurements&rdquo;, Applied Energy, v.
80, pp. 799-805, 2010.
[5] S. G&ouml;rg&uuml;l&uuml; and N. Erken, &ldquo;Energy saving in lighting system with fuzzy
logic controller which uses light-pipe and dimmable balast&rdquo;, Energy and
Buildings, v. 61, pp. 172-176, 2013.
[6] P.D. Swift, &ldquo;Splayed mirror light pipes&rdquo;, Solar Energy, v. 84, pp. 160-
165, 2010.
[7] D. Altuncu and B. Tansel, &ldquo;Aydınlatma kontrol sistemlerinin
hastanelerde kullanımı&rdquo;, V. Ulusal Aydınlatma Sempozyumu, İzmir,
T&uuml;rkiye, 7-10 Mayıs 2009, s. 51-62.
[8] A.K. Yener, &ldquo;Binalarda g&uuml;nışığından yaralanma y&ouml;ntemleri: &Ccedil;ağdaş
teknikler&rdquo;, VIII. Ulusal Tesisat M&uuml;hendisliği Kongresi, İzmir, T&uuml;rkiye,
25-28 Ekim 2007, s. 231-241.
[9] R.M. Valerio, L. Verso, A. Pellegrino and V. Serra, &ldquo;Light transmission
efficiency of daylight guidance systems: An assessment approach based
on simulations and measurements in a sun/sky Simulator&rdquo;, Solar Energy,
v. 85, pp. 2789-2801, 2011.
[10] M. Kocifaj, &ldquo;Analytical solution for daylight transmission via hollow
light pipes with a transparent glazing&rdquo;, Solar Energy, v. 83, pp. 186-192,
2009.
[11] S.C. Chu, Y.K. Cheng and J.L. Chern, &ldquo;Equiangular-spiral bent
lightpipes with arbitrary bent angle&rdquo;, Optics Communications, v. 282,
pp. 1976-1983, 2009.
[12] ISO&ndash;International Standardisation Organisation, 2004. Spatial
Distribution of Daylight CIE Standard General Sky. ISO Standard
15409:2004.
[13] H.Okutan, &ldquo;G&uuml;n Işığı İle Aydınlatmanın Temel İlkeleri Ve Gelişmiş
G&uuml;n Işığı Aydınlatma Sistemleri&rdquo;, 18th International Energy and
Environment Fair and Conference, İstanbul, T&uuml;rkiye, 25 - 26 - 27 April,
2012, s. 41-54.
[14] I. Edmonds, &ldquo;Light transmission efficiency of daylight guidance
systems: An assessment approach based on simulations and
measurements in a sun/sky Simulator&rdquo;, Solar Energy, v. 84, pp. 928-938,
2010.
[15] S. G&ouml;rg&uuml;l&uuml;, S. Kocabey, İ. Y&uuml;ksek and B. Dursun, &ldquo;Enerji
Verimliliği Kapsamında Yapılarda Doğal Aydınlatma Y&ouml;ntemleri:
Kırklareli &Ouml;rneği&rdquo;, Uluslararası II.Trakya B&ouml;lgesi Kalkinma ve
Girisimcilik Sempozyumu, Kırklareli, T&uuml;rkiye, 1-2 Ekim 2010, s.
24-36.
[16] Z.T. Kazanasmaz, M. G&uuml;naydın and S. Binol, &ldquo;B&uuml;rolarda g&uuml;nışığı
aydınlık değerlerinin &ouml;ng&ouml;r&uuml;lmesi&rdquo;, IX. Ulusal Tesisat M&uuml;hendisliği
Kongresi, İzmir, T&uuml;rkiye, 6-9 Mayıs 2009, s.811-822.
[17] G. G&ouml;kmen, T. &Ccedil;. Akıncı, M. Tektaş, N. Onat, G. Ko&ccedil;yiğit and N.
Tektaş, &ldquo;Evaluation of Student Performance in Laboratory Applications
using Fuzzy Logic&rdquo; World Conferences on Educational Sciences
(WCES 2010), Bahcesehir University, İstanbul, Turkey, 04-08 February
2010, pp. 902-909.
[18] H. J. Zimmermann, &ldquo;Fuzzy Set Theory and Its Applications&rdquo;, London:
Kluwer Academic Publisher. 2001, pp. 80-182.
[19] G. J. Klır and T. A. Folger, &ldquo;Fuzzy Set Uncertainty and Information&rdquo;,
New Jersey, Prentice Hall, 1988, pp. 1-34.
[20] The Mathworks. (2013). Fuzzy Logic Toolbox User&rsquo;s Guide, The
Mathworks Inc. Retrieved April 10 2013 from,
http://www.mathworks.com/help/pdf_doc/fuzzy/fuzzy.pdf pp. 78-98.
[21] T. J. Ross, &ldquo;Fuzzy Logic with engineering applications&rdquo;, McGraw-Hill,
Inc., 1995, pp. 71-91.</p>