Highly-Efficient Photoreaction Using Microfluidic Device

We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions.





References:
[1] Roberts, J. D. and M. C. Caserio; Basic Principles of Organic Chemistry, 2nd ed., W. A. Benjamin, Inc., Menlo Park, CA, USA, 1977.
[2] Hessel, V., S. Hardt and H. Löwe eds.; Chemical Micro Process Engineering: Fundamentals, Modeling and Reactions, Wiley-VCH, Weinheim, Germany, 2004.
[3] Hessel, V., H. Löwe, A. Müller and G. Kolb eds.; Chemical Micro Process Engineering: Processing and Plants, Wiley-VCH, Weinheim, Germany, 2005.
[4] Benson, R. S. and J. W. Ponton; "Process MiniaturisationA Route to Total Environmental Acceptability?,” Chem.Eng.Res.Des., A71, 1993, pp.160-168.
[5] Schubert, K., W. Bier, W. Keller, G. Linder and D. Seidel; "Gas to Gas Heat Transfer in Micro Heat Exchangers,” Chem. Eng. Process., 32, 1993, pp.33-43.
[6] Suga, S., A. Nagaki and J. Yoshida; "Highly Selective FriedelCrafts Monoalkylation Using Micromixing,” Chem. Commun., 3, 2003, pp.354-355.
[7] Taghavi-Moghadam, S., A. Kleemann and K. G. Golbig; "Microreaction Technology as a Novel Approach to Drug Design, Process Development and Reliability,” Org. Process. Res. Dev., 5, 2001, pp.652-658.
[8] Fukuyama, T., M. Shinmen, S. Nishitani, M. Sato and I. Ryu; "A Copper-Free Sonogashira Coupling Reaction in Ionic Liquids and its Application to a Microflow System for Efficient Catalyst Recycling,” Org. Lett., 4, 2002, pp.1691-1694.
[9] Yoshida, J. ed.; Microreactors, Epoch-making Technology for Synthesis (Maikuroriakuta, Shinjidai no Gouseigijutsu), CMC Publishing Co., Ltd., Tokyo, Japan, 2003.
[10] Matsushita, Y., T. Ichimura, N. Ohba, S. Kumada, K. Sakeda, T. Suzuki, H. Tanibata and T. Murata; "Recent Progress on Photoreactions in Microreactors,” Pure Appl. Chem., 79, 2007, pp.1959-1968.
[11] Lu, H., M. A. Schmidt and K. F. Jensen; "Photochemical Reactions and On-Line UV Detection in Microfabricated Reactors,” Lab Chip, 1, 2001, pp.22-28.
[12] Ueno, K., F. Kitagawa and N. Kitamura; "Photocyanation of Pyrene across and Oil/Water Interface in a Polymer Microchannel Chip,” Lab Chip, 2, 2002, pp.231-234.
[13] Gorges, R., S. Meyer and G. Kerisel; "Photocatalysis in Microreactors,” J. Photochem. Photobiol. A, 167, 2004, pp.95-99.
[14] Fukuyama, T., Y. Hino, N. Kamata and I. Ryu; "Quick Execution of [2+2] Type Photochemical Cycloaddition Reaction by Continuous Flow System Using a Glass-made Microreactor,” Chem. Lett., 33, 2004, pp.1430-1431.
[15] Fukuyama, T., Y. Kajihara, Y. Hino and I. Ryu; "Continuous Microflow [2+2] Photocycloaddition Reactions Using Energy-Saving Compact Light Sources,” J. Flow Chem., 1, 2011, pp.40-45.
[16] Maeda, H., H. Mukae and K. Mizuno; "Enhanced Efficiency and Regioselectivity of Intramolecular [2+2] Photocycloaddition of 1-Cyanonaphthalene Derivative Using Microreactors,” Chem. Lett., 34, 2005, pp.66-67.
[17] Sugimoto, A., T. Fukuyama, Y. Sumino, M. Takagi and I. Ryu;"Microflow Photo-Radical Reaction Using a Compact Light Source: Application to the Barton Reaction Leading to a Key Intermediate for Myriceric Acid A,” Tetrahedron, 65, 2009, pp.1593-1598.
[18] Pitts, J. N., Jr., R. L. Letsinger, R. P. Taylor, J. M. Patterson, G. Reckten wald and R. B. Martin; "Photochemical Reactions ofBenzophenone in Alcohols,” J. Am. Chem. Soc., 81, 1958, pp.1068-1077.
[19] Lu, H., M. A. Schmidt and K. F. Jensen; "Photochemical Reactions and On-Line UV Detection in Microfabricated Reactors,” Lab Chip, 1, 2001, pp.22-28.