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welding two substrates and three holder parts made of stainless 
steel. The holders that exhibited good heat conductance might 
contribute to the removal of heat from the microfluidic device 
plate.  

Fig. 2 shows photograph of the assembled microfluidic 
device. The channel width was set to 1.0 mm. The channel 
depth was set to 0.2 mm and 1.0 mm in order to represent the 
features of a “micro” scale device as shown in Table II. The 
channel plate constructed with quartz glass as the top substrate 
and black aluminum oxide as the channel substrate might have 
furnished.  
 

 
Fig. 1 Configuration of a microfluidic device 

 
TABLE II 

SPECIFICATIONS OF MICROFLUIDIC DEVICES 
 Micro-1 Micro-2 

Channel width [mm] 1.0 1.0 
Channel depth [mm] 0.2 1.0 

 

 
Fig. 2 Photograph of the assembled microfluidic device 

IV. EXPERIMENTAL METHOD 
The reaction solution with the concentration of 0.5 mol/L 

(0.5 kmol/m3) was obtained by dissolving benzophenone in 
2-propanol [19]. No catalyst such as glacial acetic acid was 
added to this solution. 

Fig. 3 shows the schematic of the microfluidic device system 
used in this study. The reaction solution of benzophenone in 
2-propanol was introduced into the microfluidic device through 
the polytetrafluoroethylene (PTFE) tube. The microfluidic 
device was exposed to an ultraviolet LED source (wavelength 
hν = 365 nm) to carry out the reaction. The product solution 
was obtained from the microfluidic device through the PTFE 
tube and collected in a vessel filled with acetone. The outlet of 
the tube was immersed into acetone to prevent the precipitation 
of benzophenone and benzopinacol bearing in mind that 
2-propanol and acetone vaporized readily. The time period of 
irradiation was controlled from 46.9 to 469.2 s within the 
controllable flow rates, and the reaction temperature was set at 
room temperature (296−297 K). 

The batch syntheses were also performed for comparison. 
The reaction solution (10 mL, 1.0 × 10-5 m3) was stirred in a 20 
mL (2.0 × 10-5 m3) vessel with a depth of about 10 mm being 
irradiated by the LED source. The reaction temperature was set 
at room temperature (296−297 K). 

The benzophenone and benzopinacol in the product solution 
were analyzed by high performance liquid chromatography 
(HPLC) produced by Hitachi High Technologies, Ltd. using the 
analysis conditions. The photoreaction yield of benzophenone 
was obtained as defined by (2). 

   
Yieldሾ%ሿ ൌ ሾ୆ୣ୬୸୭୮୧୬ୟୡ୭୪ሿ

Bሾ౛౤౰౥౦౞౛౤౥౤౛ሿ
మ ାሾ୆ୣ୬୸୭୮୧୬ୟୡ୭୪ሿ

ൈ 100    (2) 

 
Here, [C] indicates the concentration of the substance C. 

Note that one mole of benzopinacol is obtained from two 
equivalents of benzophenone. 
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Fig. 3 Schematic of the microfluidic device system used in this study 

 
It is known that the light intensity of a LED is unstable even 

just after it begins irradiating light. The LED becomes heated 
and the wavelength of light becomes unstable, as the irradiation 
is prolonged over a period of time. Furthermore, it is estimated 
that the intensity of light becomes inhomogeneous because the 
emission angle leads to overlapping intensities. 

Therefore, we measured the dependence of the light intensity 
on the irradiation time when the working distance (WD) 
between the LED source and the measurement position was set 
to 20 mm or 60 mm as shown in Fig. 4. We used the ultraviolet 
emitting LEDs (wavelength: 365 nm, emission angle: 5º, and 
radiation flux: 2.2 mW) from Nichia Corporation. The LED 
source consisted of a 5 × 5 matrix of 25 LEDs at an interval of 8 
mm. The measurement position was defined as an extension of 
the center or edge of the LED source. 

Fig. 5 shows the light intensity of the LED source used in this 
study. More than 7 min was needed until the light intensity was 
stable at an extension of the center of the LED source, while a 
few minutes were required to achieve stable intensity when the 
extension was measured at an extension of the edge of the LED 
source. At a WD of 20 mm, the difference in the light intensity 
by the measurement positions was only about 0.3 mW/cm2 (3 × 
103 mW/m2), while at a WD of 60 mm, the difference was about 
0.8 mW/cm2 (8 × 103 mW/m2). The light intensity depended 
largely on the measurement positions. The overlap between the 
radiation was small at shorter WD because the emission angle 
was only 5º. However, the overlap became larger at larger WD 
and the influence caused by the overlap became larger 
particularly at an extension of the edge of the LED source. 

The difference in the light intensity was considered to be 
small in the channels of the microfluidic device for 
photoreactions, when the difference in the measured intensity 
between at extensions of the center and edge was small. 
Therefore, we set the WD at the shortest possible value of 20 
mm and began the experiments after the LED source had 
irradiated light for more than 10 min. 
 

 
Fig. 4 Diagram showing the system used for measuring the light 

intensity of the LED source used in this study 
 

 
Fig. 5 Light intensity of the LED source used in this study 

V.  EXPERIMENTAL RESULTS 
We measured the yield of the photoreaction of benzo- 

phenone by changing the irradiation time from 46.9 to 469.2 s 
and studied the differences in the efficiencies exhibited by the 
two kinds of microfluidic devices. 

Fig. 6 shows the yields of the photoreaction of 
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benzophenone. The upper horizontal axis shows the flow rates 
corresponding to the irradiation time shown in the lower 
horizontal axis. The reaction proceeded more rapidly in 
Micro-1 with shallower channels than in Micro-2. Under the 
conditions of high concentration of benzophenone (0.5 mol/L 
(0.5 kmol/m3)) used in this study, most of the incident light was 
absorbed when the channel depth was ~0.25 mm. In the 
channels with a channel depth of 1 mm, therefore, about 
one-fourth of the solution (measured from the top) contributed 
to the photoreaction. In reactor 1, the channels remained 
unblocked at an irradiation time for more than 187.7 s, which 
corresponded to flow rates of less than 0.025 mL/min (2.5 × 
10-8 m3/min). The yield reached 36% with an irradiation time of 
469.2 s and was improved by more than 30% in comparison to 
values achieved by the batch method. This was because heat 
converted from the incident light was quickly removed at the 
bottom surface of the channels with better heat conductance 
and the liquid components hardly vaporized. Therefore, it was 
confirmed that the microfluidic device method with shallow 
channels was effective for achieving high yields in 
photoreactions. 
 

 
Fig. 6 Yields of the photoreaction of benzophenone 
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