Friction Stir Welding of Aluminum Alloys: A Review

Friction stir welding is a solid state joining process. High strength aluminum alloys are widely used in aircraft and marine industries. Generally, the mechanical properties of fusion welded aluminum joints are poor. As friction stir welding occurs in solid state, no solidification structures are created thereby eliminating the brittle and eutectic phases common in fusion welding of high strength aluminum alloys. In this review the process parameters, microstructural evolution, and effect of friction stir welding on the properties of weld specific to aluminum alloys have been discussed.





References:
[1] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith, and C. J. Dawes, "'Friction stir butt welding,” GB patent no. 9125978⋅ 8, 1991
[2] P. L. Threadgill, A. J. Leonard, H. R. Shercliff, and P. J. Withers, "Friction stir welding of aluminum alloys,” Int Mater Rev, vol. 54, pp. 49-93, 2009.
[3] W. Tang, X. Guo, J. C. McClure, and L. E. Murr, "Heat input and temperature distribution in friction stir welding,” Journal of Materials Processing and Manufacturing Science, vol. 37, pp. 163-172, 1999.
[4] M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling, and W. H. Bingel, "Properties of friction-stir-welded 7075 T651 aluminum,” Metallurgical and Materials Transactions A, vol. 29, pp. 1955-1964, 1998.
[5] A. P. Reynolds, W. D. Lockwood, and T. U. Seide, "Processing property correlation in friction stir welds, ” Material Science Forum, 331-337, pp. 1719-1724, 2000.
[6] W. B. Lee, and S. B. Jung, "The joint properties of copper by friction stir welding, ” Materials Letters, vol. 58, pp. 1041-1046, 2004.
[7] H. S. Park, T. Kimura, T. Murakami, Y. Nagaro, K. Nakata, and M. Ushio, "Microstructures and mechanical properties of friction stir welds of 60%Cu-40%Zn Copper alloy, ” Materials Science and Engineering A, vol. 371, pp. 160-169, 2004.
[8] J. A. Esparza, W. C. Davis, E. A. Trillo, and L. E. Murr, "Friction-stir welding of magnesium alloy AZ31B,” Journal of Materials Science Letters, vol. 21, pp. 917-920, 2002.
[9] C. Y. Lee, W. B. Lee, Y. M. Yeon, and S. B. Jung, "Friction stir welding of dissimilar formed Mg alloys (AZ31/AZ91),” Materials Science Forum, vol. VI, pp. 249-252, 2005.
[10] M. Peel, A. Steuwer, P. Withers, T. Dickerson, Q. Shi, and H. Shercliff, "Dissimilar friction stir welds in AA5083-AA6082 Part I: Process parameter effects on thermal history and weld properties,” Metallurgical and Materials Transactions A, vol. 37A, no. 7, pp. 2183-2193, 2006.
[11] M. Peel, A. Steuwer, and P. Withers, "Dissimilar friction stir welds in AA5083-AA6082. Part II: Process parameter effects on microstructure,” Metallurgical and Materials Transactions A, vol. 37A, no. 7, pp. 2195-2206, 2006.
[12] R. S. Mishra, and Z. Y. Ma, "Friction stir welding and processing,” Materials Science and Engineering, vol. 50, pp. 1-78, 2005.
[13] O. Hatamleh, "A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints,” International Journal of Fatigue, vol. 31, pp. 974-988, 2009.
[14] O. Hatamleh, and A. DeWald, "An investigation of peening effects on the residual stresses in friction stir welded 2195 and 7075 aluminum alloy joints,” Journal of Materials Processing Technology, vol. 209, no. 10, pp. 4822-4829, 2009.
[15] H. Aydin, A. Bayram, A. Uguz, and S. K. Akay, "Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state,” Materials and Design, vol. 30, pp. 2211-2221, 2009.
[16] H. Lombard, D. G. Hattingh, A. Steuwer, and M. N. James, "Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds,” Materials Science and Engineering A, vol. 501, pp. 119-124, 2009.
[17] P. Cavaliere, G. Campanile, F. Panella, and A. Squillace, "Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by friction stir welding,” Journal of Materials Processing Technology, vol. 180, pp. 263-270, 2006.
[18] P. Cavaliere, D. A. Santis, F. Panella, and A. Squillace, "Effect of anisotropy on fatigue properties of 2198 Al-Li plates joined by friction stir welding,” Engineering Failure Analysis, vol. 6, pp. 1856-1865, 2008.
[19] K. Surekha, B. S. Murty, and K. R. Prasad, "Microstructural characterization and corrosion behaviour of multipass friction stir processed AA 2219 aluminium alloy,” Surface & Coatings Technology, vol. 202, pp. 4057-4068, 2008.
[20] W. Xu, J. Liu, G. Luan, and C. Dong, "Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints,” Materials and Design, vol. 30, pp. 3460-3467, 2008.
[21] H. Aydin, A. Bayram, and I. Durgun, "The effect of post-weld heat treatment on the mechanical properties of 2024-T4 friction stir-welded joints,” Materials and Design, vol. 31, pp. 2568-2577, 2010.
[22] A. Sullivan, and J. D. Robson, "Microstructural properties of friction stir welded and post-weld heat-treated 7449 aluminum alloy thick plate,” Material Science and Engineering A, vol. 478, pp. 351-360, 2008.
[23] Y. C. Chen, H. J. Liu, and J. C. Feng, "Effect of post-weld heat treatment on the mechanical properties of 2219-O friction stir welded joints,” Journal of Material Science, vol. 40, pp. 4657-4659, 2005.
[24] G. Pouget, and A. P. Reynolds, Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds,” International Journal of Fatigue, vol. 30, pp. 463-472, 2008.
[25] P. Cavaliere, D. A. Santis, F. Panella, and A. Squillace, "Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by friction stir welding,” Materials and Design, vol. 30, pp. 609-616, 2009.
[26] E. Bousquet, A. Poulon-Quintin, M. Puiggali, O. Devos, and M. Touzet, "Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint,” Corrosion Science, vol. 53, pp. 3026-3034, 2011.
[27] P. Cavaliere, R. Nobile, F. W. Panella, and A. Squillace, "Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding,” International Journal of Machine Tools & Manufacture, vol. 46, pp. 588-594, 2006.
[28] P. Cavaliere, A. Squillace, and F. Panella, "Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding,” Journal of Materials Processing Technology, vol. 200, pp. 364-372, 2008.
[29] N. Rajamanickam, V. Balusamy, M. G. Reddy, and K. Natarajan, "Effect of process parameters on thermal history and mechanical properties of friction stir welds,” Materials and Design, vol. 30, pp. 2726-2731, 2009.
[30] K. Elangovan, and V. Balasubramaniam, "Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy,” Materials and Design, vol. 29, pp. 362-373, 2008.
[31] H. J. Liu, H. Fujii, M. Maeda, and K. Nogi, "Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy,” Journal of Materials Processing Technology, vol. 142, pp. 692-696, 2003.
[32] S. Malarvizhi, and V. Balasubramaniam, "Effect of welding processes on AA2219 aluminium alloy joint properties,” Trans. Nonferrous Met. Soc. China, vol. 21, pp. 962-973, 2011.
[33] L. Fratini, and B. Zuccarello, "An analysis of through-thickness residual stresses in aluminium FSW butt joints,” International Journal of Machine Tools & Manufacture, vol. 46, pp. 611-619, 2006.
[34] L. Fratini, S. Pasta, and A. P. Reynolds, "Fatigue crack growth in 2024-T351 friction stir welded joints: Longitudinal residual stress and microstructural effects,” International Journal of Fatigue, vol. 31, pp. 495-500, 2009.
[35] C. M. Chen, and R. Kovacevic, "Finite element modeling of friction stir welding – thermal and thermomechanical analysis,” International Journal of Machine Tools & Manufacture, vol. 43, pp. 1319-1326, 2003.
[36] X. Wang, K. Wang, Y. Shen, and K. Hu, "Comparison of fatigue property between friction stir and TIG welds,” Journal of University of Science and Technology Beijing, vol. 15, no. 3, pp. 280-284, 2008.
[37] P. M. G. P. Moreira, M. A. V. de Figueiredo, and P. M. S. T. de Castro, "Fatigue behaviour of FSW and MIG weldments for two aluminium alloys,” Theoretical and Applied Fracture Mechanics, vol. 48, pp. 169-177, 2007.
[38] P. M. G. P. Moreira, F. M. F. de Oliveria, and P. M. S. T. de Castro, "Fatigue behaviour of notched specimens of friction stir welded aluminum alloy 6063-T6,” Journal of Materials Processing Technology, vol. 207, pp. 283-292, 2008.
[39] R. John, K. V. Jata, and K. Sadananda, "Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys,” International Journal of Fatigue, vol. 25, pp. 939-948, 2003.
[40] P. M. G. P. Moreira, A. M. P. de Jesus, A. S. Ribeiro, and P. M. S. T. de Castro, "Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminum alloys: A comparison,” Theoretical and Applied Fracture Mechanics, vol. 50, pp. 81-91, 2008.
[41] S. Maggiolino, and C. Schmid, "Corrosion resistance in FSW and in MIG welding techniques of AA6XXX,” Journal of Materials Processing Technology, vol. 197, pp. 237-240, 2008.
[42] C. S. Paglia, and R. G. Buchheit, "The time-temperature-corrosion susceptibility in a 7050-T7451 friction stir weld,” Material Science and Engineering A, vol. 492, pp. 250-254, 2008.
[43] K. Surekha, B. S. Murty, and K. R. Prasad, "Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminium alloy,” Solid State Sciences, vol. 11, no. 4, pp. 907-917, 2009.