Carbon Accumulation in Winter Wheat under Different Growing Intensity and Climate Change

World population growth drives food demand, promotes intensification of agriculture, development of new production technologies and varieties more suitable for regional nature conditions. Climate change can affect the length of growing period, biomass and carbon accumulation in winter wheat. The increasing mean air temperature resulting from climate change can reduce the length of growth period of cereals, and without adequate adjustments in growing technologies or varieties, can reduce biomass and carbon accumulation. Deeper understanding and effective measures for monitoring and management of cereal growth process are needed for adaptation to changing climate and technological conditions.





References:
[1] IPCC (2007). Intergovernmental Panel on Climate Change Woking
Group II. Climate Change 2007: The Physical Science Basis. Solomon
S., Qin D., et al. (eds).
[2] R. Lal (2004). Soil Carbon Sequestration to Mitigate Climate Change.
Geoderma, Vol. 123, p.1-22.
[3] K. Paustian, O. Andre, H.H. Janzen, R. Lal, P. Smith, H. Tiessen, M.
Van Noordwijk and P.L. Woomer. (1997). Agricultural Soils as a Sink
to Mitigate CO2 Emissions. Soil Use and Management, Vol 13, p. 230-
244.
[4] P. Reidsma, F. Ewert, A. O. Lansink, and R. Leemans. (2010).
Adaptation to climate change and climate variability in European
agriculture: The importance of farm level responses. European Journal
of Agronomy, Vol. 32, p. 91-102.
[5] A.J. Challinor, F. Ewert, S. Arnold, E. Simelton and E. Fraser (2009).
Crops and climate change: progress, trends, and challenges in
simulating impacts and informing adaptation. Journal of Experimental
Botany, Vol. 60, p. 2775-2789.
[6] G. Maracchi, O. Sirotenko, M. Bindi (2005). Impacts of present and
future climate variability on agriculture and forestry in the temperate
regions: Europe. Climatic Change. Vol. 70, p. 117-135.
[7] Lietuvos TSR atlasas. Maskva. 1981. (In Lithuanian).
[8] Bu─ìien├À A., Antanaitis ┼á., Ma┼íauskien├À A., ┼áimanskait├À D. 2007.
Nitrogen and Phosphorus Losses with Drainage Runoff and Field
Balance as a Result of Crop Management. Communications in Soil
Science and Plant Analysis. Vol. 38, p. 2177 - 2195.
[9] A.G. Clever and D.H. Scarisbrick, (2001). Practical Statistics and
Experimental Design for Plant and Crop Science, Wiley, New York .
332 p.
[10] J.E. Olesen, M. Bindi (2002). Consequences of climate changes for
European agricultural productivity, land use and policy. European
Journal of Agronomy. Vol. 16, p. 239-262.
[11] R. H. Patil, M. Lægdsmand, J.E. Olesen, J.R. Porttwer (2010). Effect of
soil warming and rainfall patterns on soil N cycling in northern Europe.
Agriculture, Ecosystems and Environment. Vol. 139, p.195-205.
[12] S. G. Brakas, J. B. Aune (2011). Biomass and Carbon Accumulation in
Land Use Systems of Claveria, the Philippines. Carbon sequestration
potential of Agroforestry systems. Vol. 8, p. 163-175.
[13] Q. Wang, Y. Li, A. Alva (2010). Growing Cover Crops to Improve
Biomass Accumulation and Carbon Sequestration: A Phytotron Study.
Journal of Environmental Protection, Vol. 1, p. 73-84.
[14] G. Lemaire, E. van Oosterom, J. Sheehy, M.H. Jeuffroy, A. Massignam,
L. Rossato (2007). Is crop nitrogen demand more closely related to dry
matter accumulation or leaf area expansion during vegetative growth?
Field Crop Research, Vol. 100, p. 91-106.
[15] P. Forster, V. Ramaswamy, Artaxo P, Berntsen T, Betts R, Fahey DW,
Haywood J, Lean J, Lowe DC,Myhre G, Nganga J, Prinn R, Raga G,
SchulzM, Van Dorland R (2007) Changes in atmosphericconstituents
and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z,
MarquisM, Averyt KB, Tignor M, Miller HL (eds) Climate change
2007: the physical science basis. Contribution of working group I to the
fourth assessment report of the intergovernmental panel on climate
change. Cambridge University Press, Cambridge
[16] M. Moriondo, C. Giannakopoulos, M. Bindi (2011). Climate change
impact assessment: the role of climate extremes in crop yield simulation.
Climate Change, Vol. 104, p. 676-701.
[17] J. Alcamo, J.M. Moreno, B. Nováky, M. Bindi, R. Corobov, Devoy
RJN, Giannakopoulos C, Martine, J.E. Olesen, A. Shvidenko (2007).
Europe. Climate change 2007: impacts, adaptation and vulnerability. In:
Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE
(eds) Contribution of working group II to the fourth assessment report of
the intergovernmental panel on climate change. Cambridge University
Press, Cambridge, pp 541-580
[18] V. Povilaitis, S. Lazauskas (2010). Winter wheat productivity in relation
to water availability and growing intensity. Žemdirbyst├À=Agriculture
Vol. 97, p. 59-68.
[19] W. Schlenker, M. J. Roberts (2009). Nonliner temprrature effects
indicate severe damage to U.S. crop yield under climate change. PNAS,
Vol. 106, p. 15594-15598.
[20] F. Giunta, G. Pruneddu, R. Motzo (2009). Radiation interception and
biomass and nitrogen accumulation in different ceral and grain legume
species. Field Crop Research, Vol. 110, p. 76-84.
[21] C. Giannakopoulos, P. Le Sager, M. Bindi, M. Moriondo, E.
Kostopoulou, C.M. Goodess (2009). Climatic changes and associated
impacts in the Mediterranean resulting from global warming. Global
Planet Change 68:209-224
[22] G. ┼áabajievien├À, S. Sakalauskien├À, S. Lazauskas, P. Duchovskis, A.
Urbonavi─ìiut├À, G. Samuolien├À, R. Ulinskait├À, J. Sakalauskait├À, A.
Brazaityt├À, V. Povilaitis (2008). The effect of ambient air temperature
and substrate moisture on the physiological parameters of spring barley.
Žemdirbyst├À=Agriculture, vol. 95, No. 4, p. 71-80 (in Lithuanian).