Behavior of Droplets in Microfluidic System with T-Junction

Micro droplet formation is considered as a growing
emerging area of research due to its wide-range application in
chemistry as well as biology. The mechanism of micro droplet
formation using two immiscible liquids running through a T-junction
has been widely studied.
We believe that the flow of these two immiscible phases can be of
greater important factor that could have an impact on out-flow
hydrodynamic behavior, the droplets generated and the size of the
droplets. In this study, the type of the capillary tubes used also
represents another important factor that can have an impact on the
generation of micro droplets.
The tygon capillary tubing with hydrophilic inner surface doesn't
allow regular out-flows due to the fact that the continuous phase
doesn't adhere to the wall of the capillary inner surface.
Teflon capillary tubing, presents better wettability than tygon
tubing, and allows to obtain steady and regular regimes of out-flow,
and the micro droplets are homogeneoussize.
The size of the droplets is directly dependent on the flows of the
continuous and dispersed phases. Thus, as increasing the flow of the
continuous phase, to flow of the dispersed phase stationary, the size
of the drops decreases. Inversely, while increasing the flow of the
dispersed phase, to flow of the continuous phase stationary, the size
of the droplet increases.





References:
[1] Annie Colin. "Écoulement de gouttes dans des micro canaux:
simulations numériques et expériences”. Doctorat thesis, Université de
Bordeau 1. France, 2007.
[2] Anna, S. L., Bontoux, N., Stone, H. A. "Formation of dispersions using
"flow focusing” in microchannels”. Applied Physics Letters, 2003, 82
pp 364-366.
[3] Guillot, P., Colin, A."Stability of parallel flows in a microchannel after a
T junction”. Phys. Rev. 2005,E 72 066301.
[4] S. Teychené, B. Biscans."Crystal nucleation in a droplet based
microfluidic crystallizer”. Chemical Engineering Science. 2012, Volume
77, 30, pp 242–248.
[5] Chun-Xia Zhaoa, Anton P.J. Middelberg."Two-phase microfluidic
flows”. Chemical Engineering Science.2011, Volume 66, Issue 7, pp
1394–1411.
[6] TaotaoFua, b, YouguangMaa, Denis Funfschillingb, Huai Z. Lib..
"Dynamics of bubble breakup in a microfluidic T-junction divergence”.
Chemical Engineering Science. 2011,Volume 66, Issue 18, pp 4184–
4195
[7] Ildefonso, M.; Candoni, N.; Veesler, S., "A Cheap, Easy Microfluidic
Crystallization Device Ensuring Universal Solvent Compatibility”.
Organic Process Research & Development.2012, 16, 556-560.
[8] KherratAbderlghani. "Réalisation de microchambres d'analyse chimique
microcapteurs de pH et microfluidique associés”. Doctorat thesis,
Université de Rennes 1. 2012.
[9] Thorsen, et al.. "Dynamic pattern formation in a vesicle-generating
microfluidic device”. Physical review letters, 2001, 86, pp 4163–4166.
[10] Chabert Max. "Microfluidique de gouttes pour les analyses
biologiques”., Doctorat thesis, Université Paris VI.2007.
[11] Marcati Alain. "Génération de particules de polymères à structure
contrôlée par la microfluidique”. Doctorat thesis, Université de
Toulouse.2009.
[12] Guillot. P. "Ecoulement de fluides immiscibles dans un canal
submillimétrique: stabilité et application à la rhéologie”. Doctorat thesis,
Université Bordeaux 1.2006
[13] DEBAS Hélène et al.. "Etude de la formation des gouttes par micro
PIV”. 18éme Congrès Français de Mécanique, Grenoble.2007.
[14] Guillome Aubrey. "Microrésonateurs optiques à état liquide et
microfluidique digitale. Applications aux lasers à colorant en gouttes
pour les laboratoires-sur-puce”. Doctorat thesis, Université Paris
sud.2012.