Bee Optimized Fuzzy Geographical Routing Protocol for VANET

Vehicular Adhoc Network (VANET) is a new
technology which aims to ensure intelligent inter-vehicle
communications, seamless internet connectivity leading to improved
road safety, essential alerts, and access to comfort and entertainment.
VANET operations are hindered by mobile node’s (vehicles)
uncertain mobility. Routing algorithms use metrics to evaluate which
path is best for packets to travel. Metrics like path length (hop count),
delay, reliability, bandwidth, and load determine optimal route. The
proposed scheme exploits link quality, traffic density, and
intersections as routing metrics to determine next hop. This study
enhances Geographical Routing Protocol (GRP) using fuzzy
controllers while rules are optimized with Bee Swarm Optimization
(BSO). Simulations results are compared to conventional GRP.





References:
[1] Paul, B., Ibrahim, M., Bikas, M., & Naser, A. (2012). VANET Routing
Protocols: Pros and Cons. arXiv preprint arXiv:1204.1201.
[2] Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2013).
A comprehensive survey on vehicular Ad Hoc network. Journal of
network and computer applications.
[3] Mustafa, B., & Raja, U. W. (2010). Issues of Routing in VANET.
School of computing at Blekinge Institute of Technology.
[4] Sharma, N., & Thakur, J. (2013). Performance analysis of AODV
&GPSR routing protocol in VANET. International Journal of Computer
Science & Engineering Technology (IJCSET), 4(2).
[5] Venkatesh., A, Indra., R, Murali., (2014). Routing Protocols for
Vehicular Adhoc Networks (VANETs): A Review. Journal of Emerging
Trends in Computing and Information Sciences, 5(1), 25-43.
[6] Lee, K. C., Lee, U., & Gerla, M. (2010). Survey of routing protocols in
vehicular ad hoc networks. Advances in vehicular ad-hoc networks:
Developments and challenges, 149-170.
[7] Kakarla, J., Sathya, S. S., & Laxmi, B. G. (2011). A Survey on Routing
Protocols and its Issues in VANET.
[8] Sachan, G., Sharma, D. K., Tyagi, K., & Prasad, A. (2013). Enhanced
Energy Aware Geographic Routing Protocol in MANET: A Review.
[9] Maghsoudlou, A., St-Hilaire, M., & Kunz, T. (2011). A Survey on
Geographic Routing Protocols for Mobile Ad hoc Networks. Systems
and Computer Engineering, Technical Report SCE-11-03.–Carleton
University.–2011.–49 p.
[10] Menon, V. G., & PM, J. P. (2013). Performance analysis of geographic
routing protocols in highly mobile ad hoc network. Journal of
Theoretical & Applied Information Technology, 53(1).
[11] Jerbi, M., Senouci, S. M., & Ghamri-Doudane, Y. (2006). Towards
efficient routing in vehicular Ad Hoc networks. In proceedings of the
3rd IEEE international workshop on Mobile Computing and
Networking.
[12] Mohammadzadeh, H., & Bigdello, S. J. (2013). UTCARP: Urban Traffic
Control Aware Routing Protocol. International Journal.
[13] Raw, R. S., & Das, S. (2011). Performance comparison of Position
based routing Protocols in vehicle-to-vehicle (V2V) Communication.
International Journal of Engineering Science and Technology, 3(1), 435-
444.
[14] Antunes, J. N. (2011). Fuzzy Logic Based Quality of Service Models
Relatório Final.
[15] Xia, F., Zhao, W., Sun, Y., & Tian, Y. C. (2007). Fuzzy logic control
based QoS management in wireless sensor/actuator networks. Sensors,
7(12), 3179-3191.
[16] Ishibuchi, H., & Yamamoto, T. (2002, July). Fuzzy Rule Selection By
Data Mining Criteria And Genetic Algorithms. In GECCO (pp. 399-
406).
[17] Ishibuchi, H., & Nojima, Y. (2005). Multiobjective Formulations of
Fuzzy Rule-Based Classification System Design. In EUSFLAT Conf.
(pp. 285-290).
[18] Wang, W., Xie, F., & Chatterjee, M. (2009). Small-scale and large-scale
routing in vehicular ad hoc networks. Vehicular Technology, IEEE
Transactions on, 58(9), 5200-5213.
[19] Pandit, K., Ghosal, D., Zhang, H. M., & Chuah, C. N. (2013). Adaptive
Traffic Signal Control With Vehicular Ad hoc Networks. IEEE T.
Vehicular Technology, 62(4), 1459-1471.
[20] Li, Y., Jin, D., Wang, Z., Zeng, L., & Chen, S. (2013). Exponential and
power law distribution of contact duration in urban vehicular ad hoc
networks. Signal Processing Letters, IEEE, 20(1), 110-113.
[21] Sou, S. I. (2013). Modeling emergency messaging for car accident over
dichotomized headway model in vehicular Ad-hoc networks. IEEE
transactions on communications, 61(2), 802-812.
[22] Vaqar, S. A., & Basir, O. (2009). Traffic pattern detection in a partially
deployed vehicular ad hoc network of vehicles. Wireless
Communications, IEEE, 16(6), 40-46.
[23] Khabazian, M., Mehmet-Ali, M., & Aissa, S. (2013). Analysis of
continuous communication availability in vehicular ad hoc networks.
Systems Journal, IEEE, 7(1), 137-150.
[24] Salahuddin, M. A., Al-Fuqaha, A., & Guizani, M. (2014). Exploiting
Context Severity to Achieve Opportunistic Service Differentiation in
Vehicular Ad hoc Networks.
[25] Hafeez, K. A., Zhao, L., Mark, J. W., Shen, X., & Niu, Z. (2013).
Distributed Multichannel and Mobility-Aware Cluster-Based MAC
Protocol for Vehicular Ad Hoc Networks. Vehicular Technology, IEEE
Transactions on, 62(8), 3886-3902.
[26] Mohimani, G. H., Ashtiani, F., Javanmard, A., & Hamdi, M. (2009).
Mobility modeling, spatial traffic distribution, and probability of
connectivity for sparse and dense vehicular ad hoc networks. Vehicular
Technology, IEEE Transactions on, 58(4), 1998-2007.
[27] Sun, J., Zhang, C., Zhang, Y., & Fang, Y. (2010). An identity-based
security system for user privacy in vehicular ad hoc networks. Parallel
and Distributed Systems, IEEE Transactions on, 21(9), 1227-1239.
[28] Dhurandher, S. K., Misra, S., Obaidat, M. S., Gupta, M., Diwakar, K., &
Gupta, P. (2010). Efficient angular routing protocol for inter-vehicular
communication in vehicular ad hoc networks. Communications, IET,
4(7), 826-836.
[29] Taynnan Albuquerque de Oliveira Barros, M., Cezar de Morais Gomes,
R., & Fabiano Batista Ferreira da Costa, A. (2013). A Top-down Multilayer
Routing Architecture for Vehicular Ad-Hoc Networks. Latin America Transactions, IEEE (Revista IEEE America Latina), 11(6),
1344-1352.
[30] Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). VANET
routing on city roads using real-time vehicular traffic information.
Vehicular Technology, IEEE Transactions on, 58(7), 3609-3626.
[31] Goonewardene, R. T., Ali, F. H., & Stipidis, E. L. I. A. S. (2009).
Robust mobility adaptive clustering scheme with support for geographic
routing for vehicular ad hoc networks. Intelligent Transport Systems,
IET, 3(2), 148-158.
[32] Al-Rabayah, M., & Malaney, R. (2012). A new scalable hybrid routing
protocol for VANETs. Vehicular Technology, IEEE Transactions on,
61(6), 2625-2635.
[33] Booysen, M. J., Zeadally, S., & Van Rooyen, G. J. (2011). Survey of
media access control protocols for vehicular ad hoc networks. IET
communications, 5(11), 1619-1631.
[34] Alcalá, R., Gacto, M. J., Herrera, F., & Alcalá-Fdez, J. (2007). A multiobjective
genetic algorithm for tuning and rule selection to obtain
accurate and compact linguistic fuzzy rule-based systems. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
15(05), 539-557.
[35] Dervis, K. and A. Bahriye, 2009. A comparative study of artificial bee
colony algorithm. Appl. Math. Comput., 214: 108-132.
[36] Hemalatha, K. S. K. M. (2014). An Innovative Potential on Rule
Optimization using Fuzzy Artificial Bee Colony.
[37] Niittymäki, J. (2001). General fuzzy rule base for isolated traffic signal
control-rule formulation. Transportation Planning and Technology,
24(3), 227-247..