Analysing and Classifying VLF Transients

Monitoring lightning electromagnetic pulses (sferics) and other terrestrial as well as extraterrestrial transient radiation signals is of considerable interest for practical and theoretical purposes in astro- and geophysics as well as meteorology. Managing a continuous flow of data, automation of the analysis and classification process is important. Features based on a combination of wavelet and statistical methods proved efficient for this task and serve as input into a radial basis function network that is trained to discriminate transient shapes from pulse like to wave like. We concentrate on signals in the Very Low Frequency (VLF, 3 -30 kHz) range in this paper, but the developed methods are independent of this specific choice.





References:
[1] Betz H.-D., Oettinger W. P., Schmidt K., Wirz M., Modern Lightning Detection and Implementation of a New Network in Germany, General Assembly EGU, Wien/ Austria, April 2005
[2] Betz H.-D., Eisert B. , Oettinger W. P., Four year experience with an atmospherics-based automatic early warning system for thunderstorms, Proc. 26th Int. Conference on Lightning Protection (ICLP), Cracow/ Poland, 91-95, ISBN 83-910689-5-1, 2002
[3] Schienle A., Stark R., Walter B., Vaitl D., Kulzer R., Effects of Low-Frequency Magnetic Fields on Electrocordical Activity in Humans: A Sferic Simulation Study, International Journal of Neuroscience, 90, 21¬36, 1997.
[4] Tzanis, A., Vallianatos, F., A critical review of Electric Earthquake Precursors, Annali di Geofisica, 44/2, 429-460, 2001
[5] Konstantanaras, A., Varley, M.R., Vallianatos, F., Collins, G., Holifield, P., A neuro-fuzzy approach to the reliable recognition of electric earthquake precursors, Natural Hazards and Earth Sciences 4:641-646, 2004
[6] Steinbach, P., Lichtenberger, J., Ferencz, Cs., Case studies of possible earthquake related perturbations on narrow band VLF time series, Geo¬physical research abstracts, Vol. 5, 10946, 2003
[7] Aschwanden, M., Kliem B., Schwarz U., Kurths, J., Wavelet Analysis of Solar Flare Hard X-rays, The Astrophysical Journal, 505:941, 1998, October 1
[8] Cummer, S.A.,Lightning and ionospheric remote sensing using VLF/ELF radio atmospherics, Dissertation. Stanford University. August 1997
[9] Reising, S.C., Remote sensing of the electrodynamic coupling between thunderstorm systems and the mesosphere / lower ionosphere. Disserta¬tion. Stanford University. June 1998
[10] Mushtak V.C., Lowenfels D.F., Williams E.R., Stewart M.F., Full ELF/VLF Bandwitdh Observations of Lightning in the Earth-Ionosphere Waveguide, American Geophysical Union, Fall Meeting 2002, abstract Al1C-0111
[11] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipes in C, Cambridge University Press, 1992
[12] Haykin, S., Neural networks, Prentice Hall, 1999
[13] Takagi, T., Sugeno, M., Fuzzy identification of systems and its applica¬tions to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, vol. 15, 116-132, 1985
[14] Jang, S.R., Sun, C.T.,Functional equivalence between radial basis func¬tion networks and fuzzy inference, IEEE Transctions on neural networks, 4(1), 156-159, 1993
[15] Jin, Y., Sendhoff, B., Extracting interpretable fuzzy rules from RBF networks, Neural Processing Letters, 149-164, 2003
[16] Nelles, 0., Nonlinear System Identification, Springer, Berlin, 2001