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Analysing and Classifying VLF Transients
Ernst D. Schmitter

Abstract— Monitoring lightning electromagnetic pulses (sferics)
and other terrestrial as well as extraterrestrial transient radiation
signals is of considerable interest for practical and theoretical pur-
poses in astro- and geophysics as well as meteorology. Managing a
continuous flow of data, automation of the analysis and classification
process is important. Features based on a combination of wavelet and
statistical methods proved efficient for this task and serve as input into
a radial basis function network that is trained to discriminate transient
shapes from pulse like to wave like. We concentrate on signals in the
Very Low Frequency (VLF, 3 -30 kHz) range in this paper, but the
developed methods are independent of this specific choice.
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I. INTRODUCTION

ATMOSPHERIC electromagnetic pulse radiation (shortly
sferics) related to thunderstorms is a subject of continuous

monitoring within worldwide networks for some decades with
purposes going from early warnings for severe weather con-
ditions via geophysical research to psychobiological studies
[1], [2], [3]. But there is a lot more natural transient elec-
tromagnetic activity from terrestrial as well as extraterrestrial
sources [7]. In the last years transient radiation on different
time scales from earth crust zones under severe pressure is
under consideration in the context of earthquake precursors
[4],[5],[6]. Characterising, discriminating and classifying nat-
ural transient signals therefore is a task with possibly far
reaching applications in very different disciplines.

Amplitude thresholding and exact correlation with time of
a properly identified pulse at various receiving places is suf-
ficient for localising the signal source. For sferics automated
location and intensity logging is practised successfully with
increasing accuracy within networks.

Automatic discrimination of transient signal shapes for
further investigations needs some more envolved methods we
want to discuss in this paper.

We concentrate upon typical transients received in the VLF
range (by definition 3 .. 30kHz, sferics usually have highest
amplitudes between 1.5 and 15 kHz). These are: unipolar
pulses (from very different sources, partly man made, Fig. 1),
bipolar pulses (mostly caused by man made switching events)
sferics (lightning radiation with ionospheric echoes, Fig. 2),
slow tailed sferics (presumably caused by lightnings followed
by a continuous current flow; these events are suspected to
cause sprites, i.e. voluminous discharges above a thunderstorm
up to the lower ionosphere, Fig. 3), tweaks (prolongued, iono-
spherically dispersed sferics, Fig. 4, they produce a tweaking
sound if fed to an audio system) and damped oscillations of
mostly man made origin (Fig. 5).
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Fig. 1: Unipolar pulse

Fig. 2: Sferic: lightning transient with ionospheric echoes

II. SHAPE FEATURES OF TRANSIENTS

A. Statistics based features

Usually amplitude thresholding is the first step filtering out
strong signals. After that, some information about the transient
shape can be quantified using the signal value distribution.
For further processing, the signal y(i) is normalised, i.e. its
z-scores are calculated:

z(i) =
y(i) − μ

σ
(1)

Normalised signals of different sources can be compared
more easily. Together with the mean μ and the standard
deviation σ the signal y(i) can be reconstructed from the z(i).
z(i) is the dimensionless deviation of y(i) from the mean as
a multiple of the signal standard deviation. Fig. 6 shows the
corresponding z-score histogram to fig. 2.

For shape characterisation we use the 3rd and 4th moments
of the distribution, i.e. skewness sk and kurtosis ku:

sk =
1
n

n∑
i=1

z(i)3 (2)

ku =
1
n

n∑
i=1

z(i)4 − 3 (3)

Skewness is sensitive to unipolarity of the signal. For
example a large negative skewness usually is a consequence
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Fig. 3: Sferic with slow tail

Fig. 4: Tweak: ionospherically dispersed sferic

of a large negative pulse. Kurtosis is a measure of how tailed
the distribution is. A large positive value indicates a strongly
’leptokurtic’ distribution shape i.e. values are concentrated
around the mean with large (but rare) outliers produced by
bipolar pulses in the signal - in contrast e.g. to a gaussian bell
shaped distribution with about zero kurtosis as we have with
oscillations and noise. A broadened (’platykurtic’) histogram
shape is characterised by negative kurtosis.

B. Wavelet transform based features

Discrete wavelet transformations (DWTs) have proved to be
a valuable tool for transients characterisation.

Fig. 8 shows a signal train (29 = 512 components, 16 ms
at 32 kHz sampling rate) containing a sferic (cp. Fig. 2) with
its DWT sum and detail coefficients with respect to the highly
localised Daubechies (DAUB4) wavelets [11].

In fig. 7 the typical steps of a discrete wavelet
transform algorithm in the case of a Daubechies (4
coefficient) transform are reviewed. The action of the DWT
matrix D on an example signal vector �y = (y1..y8)
gives as the first coefficient of the result vector:
D�y(1) = s1 = c1 ∗ y1 + c2 ∗ y2 + c3 ∗ y3 + c4 ∗ y4, which with
positive coefficients ci is a weighted sum of the first 4 signal
values. D�y(2) = d1 = c3 ∗ y1 − c2 ∗ y2 + c1 ∗ y3 − c0 ∗ y4

is a weighted difference of the first 4 signal values. Thus
D�y alternatingly contains moving weighted averages and
differences of the input signal. The exact values of the
coefficients are fixed by imposing the following requirements,
cp. [11]:
D should be orthogonal: DD+ = Id, so D−1 = D+. The
difference operation should yield 0 in case of a constant
signal: c3 − c2 + c1 − c0 = 0 as well as for a linearly
increasing signal: c3 ∗ 0 − c2 ∗ 1 + c1 ∗ 2 − c0 ∗ 3 = 0.

Fig. 5: Damped oscillation

Fig. 6: Normalised signal value distribution (Fig. 2)

The 4 sums are then gathered in the upper part and the
differences in the lower part of a new vector. The reduced
matrix D (4x4) is then applied in the same manner to the upper
part only. This scheme is repeated q-1 times for a vector of
length 2q and generates q detail scales. So for 8 values (q = 3)
in two steps 3 scales are generated or for 512 values 9 detail
scales in eight steps.

For the detection of the relevant signal features the energies
in the different DWT scales have been proved to be useful.
The energy e(s) on scale s simply is the squared sum of the
DWT coefficients of that scale.

Fig. 7: Discrete wavelet transformation scheme for the
Daubechies 4 coefficient case.

Filtering out the slow components of a signal is an efficient
way to find out its pulse characteristics - in contrast to other
applications, where the fast varying part is unwanted ’noise’.

Looking at the frequency domain, zeroing more and more
of the less detail (’slow’) coefficients increasingly attenuates
the lower frequency amplitudes - fig. 9.



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:1, No:6, 2007

70

Fig. 8: Input signal and discrete wavelet coefficients from
coarse (slow) to detailed (fast) scales and the scale energies

(right). Only the coefficient ranges with highest scale
energies are kept for areconstruction of the transient (local

filtering).

Fig. 9: Subsequent attenuation of low frequency amplitudes
with DWT fast component filtering

The main advantage of wavelet transforms over Fourier and
related transforms however is its locality. So by transforming
back only those DWT coefficients localised near the time
event of interest isolates just the transient under investigation.
Because of taking into account local coefficients on the
scales with the highest energy, more details of the pulse are
reconstructed as with a simple fast component filtering using
only the coefficients of the most detailed scale or a high pass
Fourier filter.

Fig. 10 shows the relevant part of a locally filtered transient.
It was gained by an inverse wavelet transform of the 3 scales
with the highest energies restricted to the time span where
the signal is above a threshold. The time distance of the
ionospheric echoes converges to Δt = 2h/c, with h the height
of the reflecting lower ionospheric boundary and the velocity
of electromagnetic radiation, c. With Δt = 1/3 ms for this
wave packet, h = 50km.

III. CLASSIFICATION WITH A RADIAL BASIS FUNCTION
NEURAL NETWORK (RBFN)

Signal skewness and kurtosis, i.e. the 3rd and 4th moments
of the value distribution together with the energies of the
wavelets scales form a feature vector suitable for classification.

Fig. 10: Locally component filtered signal and identification
of ionospheric echoes.

In our example each signal has 512 = 29 components (using
32000 samples/sec this results in a duration of 16ms). The
energies of the DWT scales 2..9 are used for the feature vector
that in total has 10 components as inputs for the classifier. The
task of the classifier using this feature vector is to discriminate
unipolar pulses (output center value y = +1), sferics (y =
0.5), slow tailed sferics (y = 0.0), tweaks (y = −0.5), and
oscillations (y = −1), i.e. from ’pulse like’ to ’wave like’, so
that events can be automatically sorted and saved for further
analysis. The sequence of transients as just indicated can be
characterised by a continuous classification parameter going
from ’pulse like’ to ’wave like’.
A radial basis function network (RBFN, [12]) with a 10
parameter feature input and a single output parameter is trained
with a set of training vectors (see Fig. 11).

Fig. 11: Signal classification scheme

Each training vector consists of 10 features and a
classification value y. The matrix of training vectors is
normalised with respect to the mean and the standard
deviation of each component. With normalised feature vector
�x, K weights wj , basis function centers �tj and width
parameters cj the normalised classification output y(n) for a
(normalised) input �x is

y(n)(�x) =
K∑

j=1

wje
−cj(�x−�tj)

2
(4)

As starter parameters for a training process we randomly
select K basis function centers �tj from the training set and
define constant width parameters
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cj :=
K

d2
max

(5)

with the maximum center distance

dmax = maxi,j�ti − �tj (6)

The initial weights we get from

wj :=
m∑

i=1

g+
jiy

(n)
i (7)

with m training vectors (�xi, y
(n)
i ), and g+ being the pseudoin-

verse matrix of gij := e−cj(�xi−�tj)
2
.

Weights, centers and width parameters are then optimised
(trained) using a Nelder-Mead-simplex algorithm [11] with
respect to the mean squared classification error.

We usually use K = 10 basis functions with several
hundreds of training vectors. The main problem with getting
enough proper training vectors is, that for example normal
sferic transients occur abundantly frequent, whereas others
occur quite rarely. In a VLF monitoring system the RBFN
is successfully used to automatically sort the flow of incom-
ing amplitude thresholded signal chunks into the mentioned
transients classes. The fuzzy transition between the transients
is satifactorily reflected by the continuous output parameter.
Wrong classifications (i.e. with an y-error > 0.5) occur in less
than 5 % of the received samples.

Fig. 12 shows the graphical user interface of a software
implementation of the described transient analysis and classi-
fication algorithms. An incoming transient is shown together
with its fast Fourier transform. In the lower left the component
values of the feature vector generated by this signal are
displayed. These are input values for the RBFN. The last
number in this row following the input values is the output
of the RBFN times 100.
Fig. 13 is an example for a fast scale analysis of the same
incoming wavefrom as in fig. 12. After zeroing out slow
scale DWT coefficients and back transformation the resulting
transient is shown.
The Multi Media control box in the lower right of the user
interface allows to hear the sound of the transient as the VLF
frequency range largely overlaps with the audio frequency
domain.
At this place we would like to thank Michael Hebert, Hon-
olulu, for initiating the development of this time domain
receiver software and for many helpful online discussions.

IV. FUZZY RULE INTERPRETATION OF THE RBFN

One of the reasons for choosing a RBFN was, that it has
a structure allowing a straightforward Takagi-Sugeno fuzzy
rule interpretation [13], [14], [15] for each member function:

IF �x is in the domain of basis function j THEN y(n) = wj

So, the RBFN output (equ. 4) can equivalently be looked
at as the output of a system with K rules, each having fuzzy
premises and crisp consequences. In this context wj is the

Fig. 12: Transients analysis and classification software

Fig. 13: Transients analysis and classification software:
wavelet filtered sferic (discarding coarse scales)

weight of rule j and e−cj(�x−�tj)
2

the relevance of rule j.

Because of

e−cj(�x−�tj)
2

= e−cj(x1−tj1)
2

e−cj(x2−tj2)
2

.. e−cj(xp−tjp)2

(8)
for a p-dimensional input the premise part of rule j can be

read as

IF x1 is in dj1 AND x2 is in dj2 .. AND xp is in djp

where dji = e−cj(xi−tji)
2

is the gaussian membership
function for input i centered at tji with width parameter cj .

We should add, that the usual RBFN corresponds to a
reduced Takagi-Sugeno fuzzy model. In general, T-S fuzzy
rules have the form:

IF x1 is in dj1 AND x2 is in dj2 .. AND xp is in djp

THEN y(n) = wj0+wj1x1+wj2x2+..+wjpxp = wj0+ �wj ·�x
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Replacing wj by wj0 + �wj · �x in the RBNF output (equ.
4) generalises the RBNF to a locally linear RBNF, also called
Locally Linear Neuro Fuzzy Model (LLNFM). An efficient
iterative training procedure for LLNFMs called LOLIMOT
(LOcally LInear MOdel Tree) is described in [16]. Within
this framework there is an additional number of K ∗ p free
parameters that can help to reduce the total number of rules
K and by this easing a fuzzy rule interpretation.
Fuzzy rule based interpretation of a RBFN with a moderate
number of basis functions allows for some more direct insight
into the classification process, than e.g. backpropagation net-
works. In this way domain analysis of the basis functions using
the trained centers, widths and weights reveals correlations
between feature combinations and transients characteristics.
Future work is going in this direction.

V. CONCLUSION

A sequence of statistics and wavelet transform based
features proved useful with automating transients signal
detection, classification and analysis. Whereas the moment
parameters skewness and kurtosis characterise global signal
distribution statistic properties, the wavelet scale energies
represent information about the behaviour at different time
scales.
Using a radial basis function net, the features successfully
discriminate transients received in the VLF frequency range
from ’pulse like’ to ’wave like’.
The sets of the wavelet coefficients with the highest energy
contents additionally provide the information to locally
reconstruct the most relevant part of the transient for further
analysis.

The transients shown in this paper have been monitored
with an E-field receiver, the signal then fed into the sound
card of a notebook and digitally processed with the described
algorithms in this paper - thus providing a mobile VLF
monitoring, discrimination and analysis system. We believe
that the discussed methods are valuable beyond this example.
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