Ab Initio Molecular Dynamics Simulations of Furfural at the Liquid-Solid Interface

The bonding configuration and the heat of adsorption
of a furfural molecule on the Pd(111) surface were determined by ab
initio density-functional-theory calculations. The dynamics of pure
liquid water, the liquid-solid interface formed by liquid water and the
Pd(111) surface, as well as furfural at the water-Pd interface, were
investigated by ab initio molecular dynamics simulations at finite
temperatures. Calculations and simulations suggest that the bonding
configurations at the water-Pd interface promote decarbonylation of
furfural.





References:
<p>[1] S. Sitthisa, T. Pham, T. Prasomsri, T. Sooknoi, R. G. Mallinson, D. E.
Resasco, &ldquo;Conversion of furfural and 2-methylpentanal on Pd/SiO2 and
PdCu/SiO2 catalysts,&rdquo; Journal of Catalysis, vol. 280, no. 1, 2011, pp.
17&ndash;27.
[2] S. Sitthisa, D. E. Resasco, &ldquo;Hydrodeoxygenation of furfural over
supported metal catalysts: a comparative study of Cu, Pd and Ni,&rdquo;
Catalysis Letters, vol. 141, no. 6, Jun. 2011, pp. 784&ndash;791.
[3] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos,
&ldquo;Iterative minimization techniques for ab initio total-energy calculations:
molecular dynamics and conjugate gradients,&rdquo; Reviews of Modern
Physics, vol. 64, no. 4, 1992, pp. 1045&ndash;1097.
[4] G. Kresse, J. Hafner, &ldquo;Ab initio molecular dynamics for liquid metals,&rdquo;
Physical Review B, vol. 47, no. 1, 1993, pp. 558&ndash;561.
[5] G. Kresse and J. Furthm&uuml;ller, &ldquo;Efficiency of ab-initio total energy
calculations for metals and semiconductors using a plane-wave basis set,&rdquo;
Computational Materials Science, vol. 6, no. 1, Jul. 1996, pp. 15&ndash;50.
[6] G. Kresse and J. Furthm&uuml;ller, &ldquo;Efficient iterative schemes for ab initio
total-energy calculations using a plane-wave basis set,&rdquo; Physical Review
B, vol. 54, no. 16, 1996, pp. 11169&ndash;11186.
[7] S. Wang, M. Di Ventra, S.-G. Kim, and S. T. Pantelides, &ldquo;Atomic-scale
dynamics of the formation and dissolution of carbon clusters in SiO2,&rdquo;
Physical Review Letters, vol. 86, no. 26, 2001, pp. 5946&ndash;5949.
[8] S. Wang, A. Borisevich, S. N. Sergey, K. Sohlborg, M. V. Glazoff, S. J.
Pennycook, and S. T. Pantelides, &ldquo;Dopants adsorbed as single atoms
prevent degradation of catalysts,&rdquo; Nature Materials, vol. 3, Feb. 2004, pp.
143&ndash;146.
[9] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson,
D. J. Singh, and C. Fiolhais, &ldquo;Atoms, molecules, solids, and surfaces:
applications of the generalized gradient approximation for exchange and
correlation,&rdquo; Physical Review B, vol. 46, no. 11, 1992, pp. 6671&ndash;6687.
[10] J. P. Perdew and Y. Wang, &ldquo;Accurate and simple analytic representation
of the electron-gas correlation energy,&rdquo; Physical Review B, vol. 45, no. 23,
1992, pp. 13244&ndash;13249.
[11] D. Vanderbilt, &ldquo;Soft self-consistent pseudopotentials in a generalized
eigenvalue formalism,&rdquo; Physical Review B, vol. 41, no.11, 1990, pp.
7892&ndash;7895.
[12] G. Kresse and J. Hafner, &ldquo;Norm-conserving and ultrasoft
pseudopotentials for first-row and transition elements,&rdquo; Journal of
Physics: Condensed Matter, vol. 6, no. 40, 1994, pp. 8245&ndash;8257.
[13] R. Car, M. Parrinello, &ldquo;Unified approach for molecular dynamics and
density-functional theory,&rdquo; Physical Review Letters, vol. 55, no. 22, 1985,
pp. 2471&ndash;2474.
[14] S. Nos&eacute;, &ldquo;A unified formulation of the constant temperature molecular
dynamics methods,&rdquo; Journal of Chemical Physics, vol.81, no. 1, 1984, pp.
511&ndash;519.
[15] S. Wang, S. J. Mitchell, P. A. Rikvold, &ldquo;Ab initio monte carlo simulations
for finite-temperature properties: application to lithium clusters and bulk
liquid lithium,&rdquo; Computational Materials Science, vol. 29, no. 2, Feb.
2004, pp. 145&ndash;151.</p>