A New Image Psychovisual Coding Quality Measurement based Region of Interest

To model the human visual system (HVS) in the region of interest, we propose a new objective metric evaluation adapted to wavelet foveation-based image compression quality measurement, which exploits a foveation setup filter implementation technique in the DWT domain, based especially on the point and region of fixation of the human eye. This model is then used to predict the visible divergences between an original and compressed image with respect to this region field and yields an adapted and local measure error by removing all peripheral errors. The technique, which we call foveation wavelet visible difference prediction (FWVDP), is demonstrated on a number of noisy images all of which have the same local peak signal to noise ratio (PSNR), but visibly different errors. We show that the FWVDP reliably predicts the fixation areas of interest where error is masked, due to high image contrast, and the areas where the error is visible, due to low image contrast. The paper also suggests ways in which the FWVDP can be used to determine a visually optimal quantization strategy for foveation-based wavelet coefficients and to produce a quantitative local measure of image quality.





References:
[1] E.-C. Chang and C. Yap, "A wavelet approach to foveating images" in
Proc. 13th ACM Symp. Computational Geometry, 1997, pp. 397-399.
[2] E.-C. Chang, "Foveation techniques and scheduling issues in thin wire
visualization," Ph.D. dissertation, New York Univ., 1998.
[3] E.-C. Chang, S. Mallat, and C. Yap. (1999) Wavelet Foveation. (Online).
Available: http://www.cs.nyu.edu/visual/
[4] S. J. P. Westen, R. L. Lagendijk and J. Biemond, "Perceptual Image
Quality based on a Multiple Channel HVS Model," Proceedings of
ICASSP, pp. 2351-2354, 1995
[5] C. Zetzsche and G. Hauske, "Multiple Channel Model Prediction of
Subjective Image Quality," SPIE, Human Vision, Visual Processing, and
Display, 1077, pp. 209-215, 1989.
[6] S. Daly, "The visible differences predictor: An algorithm for the
assessment of image fidelity," in Digital Images and Human Vision (A.
B. Watson, ed.), pp. 179-205, Cambridge, MA: MIT Press, 1993W.-K.
Chen, Linear Networks and Systems (Book style). Belmont, CA:
Wadsworth, 1993, pp. 123-135.
[7] D. J. Heeger and P. C. Teo, "A model of perceptual image fidelity,"
Proc. Of IEEE Int'l Conf. on Image Proc., Oct. 23-26 1995, Washington,
D.C., USA, pp. 343-345.
[8] S. Mallat "A wavelet Tour of Signal and Image Processing". Edition 2.
2002.
[9] Marc Antonini, Michel Barlaud, Pierre Mathieu, and Ingrid Daubechies,
"Image Coding Using Wavelet Transform," IEEE Transaction on Image
Processing, vol. 1, no. 2, pp. 205-220, April 1992.
[10] Andrew P. Bradley "A Wavelet Visible Difference Predictor" Member
IEEE Transactions on Image Processing Vol. 8. No. 5. May 1999.
[11] Andrew B. Watson, Gloria Y. Yang, Joshua A. Solomon, and John
Villasenor "Visibility of Wavelet Quantization Noise" Member IEEE
Transactions on Image Processing VOL. 6, NO. 8, AUGUST 1997.
[12] S. Lee, M. S. Pattichis, and A. C. Bovik, "Foveated video quality
assessment," IEEE Trans. Multimedia, vol. 3, 2001.
[13] "Foveated video compression with optimal rate control," IEEE Trans.
Image Processing, vol. 10, pp. 977-992, July 2001.
[14] "Rate control for foveated MPEG/H.263 video," in IEEE ICIP, vol. 2,
1998.