A Modern Review of the Spintronic Technology: Fundamentals, Materials, Devices, Circuits, Challenges, and Current Research Trends

Spintronic, also termed spin electronics or spin transport electronics, is a kind of new technology, which exploits the two fundamental degrees of freedom- spin-state and charge-state of electrons to enhance the operational speed for the data storage and transfer efficiency of the device. Thus, it seems an encouraging technology to combat most of the prevailing complications in orthodox electron-based devices. This novel technology possesses the capacity to mix the semiconductor microelectronics and magnetic devices’ functionalities into one integrated circuit. Traditional semiconductor microelectronic devices use only the electronic charge to process the information based on binary numbers, 0 and 1. Due to the incessant shrinking of the transistor size, we are reaching the final limit of 1 nm or so. At this stage, the fabrication and other device operational processes will become challenging as the quantum effect comes into play. In this situation, we should find an alternative future technology, and spintronic may be such technology to transfer and store information. This review article provides a detailed discussion of the spintronic technology: fundamentals, materials, devices, circuits, challenges, and current research trends. At first, the fundamentals of spintronics technology are discussed. Then types, properties, and other issues of the spintronic materials are presented. After that, fabrication and working principles, as well as application areas and advantages/disadvantages of spintronic devices and circuits, are explained. Finally, the current challenges, current research areas, and prospects of spintronic technology are highlighted. This is a new paradigm of electronic cum magnetic devices built on the charge and spin of the electrons. Modern engineering and technological advances in search of new materials for this technology give us hope that this would be a very optimistic technology in the upcoming days.





References:
[1] H. Ilatikhameneh, T. Ameen, B. Novakovic, Y. Tan, G. Klimeck and R. Rahman, “Saving Moore’s Law Down to 1  nm Channels with Anisotropic Effective Mass,” Scientific Reports, Nature, vol. 6, 31501, 2016. https://doi.org/10.1038/srep31501.
[2] M. H. Bhuyan, “History and Evolution of CMOS Technology and its Application in Semiconductor Industry,” Southeast University Journal of Science and Engineering (SEUJSE), ISSN: 1999-1630, vol. 11, no. 1, June 2017, pp. 28-42.
[3] M. H. Bhuyan, “Analytical Modeling of the Pocket Implanted Nano Scale n-MOSFETs,” PhD Thesis, EEE Department, BUET, Dhaka, Bangladesh, 2011, ch. 1.
[4] H.-L. Zhao, “Quantum mechanical calculation of electron spin,” Open Physics, vol. 15, no. 1, 2017, pp. 652-661. https://doi.org/10.1515/phys-2017-0076.
[5] A. Hirohataa, K. Yamadab, Y. Nakatanic, I.-L. Prejbeanud, B. Diényd, P. Pirroe, and B. Hillebrands, “Review on Spintronics: Principles and Device Applications,” Journal of Magnetism and Magnetic Materials, vol. 509, September 2020, https://doi.org/10.1016/j.jmmm.2020.166711.
[6] Y. P. Feng, L. Shen, M. Yang, A. Wang, M. Zeng, Q. Wu, S. Chintalapati, and C.‐R. Chang, “Prospects of spintronics based on 2D materials,” WIREs Computational Molecular Science, vol. 7, e131321, April 2017, doi: 10.1002/wcms.1313.
[7] A. Gupta, R. Zhang, P. Kumar, V. Kumar, and A. Kumar, |Nano-Structured Dilute Magnetic Semiconductors for Efficient Spintronics at Room Temperature,” Journal Magnetochemistry, vol. 6, no. 1, pp. 1-22, March 2020, https://doi.org/10.3390/magnetochemistry6010015.
[8] T. Yu-Feng, H. Shu-Jun, Y. Shi-Shen, M. Liang-Mo, “Oxide magnetic semiconductors: materials, properties, and devices,” Chinese Physical Society and IOP Publishing Ltd., Chinese Physics B, Volume 22, Number 8, 2013, https://doi.org/10.1088/1674-1056/22/8/088505.
[9] F. J. Pinski, J. Staunton, B. L. Gyorffy, D. D. Johnson, and G. M. Stocks, “Ferromagnetism versus Antiferromagnetism in Face-Centered-Cubic Iron,” Physical Review Letters, American Physical Society, vol. 56, 2096, 12 May 1986, https://doi.org/10.1103/PhysRevLett.56.2096.
[10] R. Peierls, “On Ising's model of ferromagnetism,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 32, no. 3, pp. 477-481, 1936. doi:10.1017/S0305004100019174.
[11] S. M. Yakout, “Spintronics: Future Technology for New Data Storage and Communication Devices, Journal of Superconductivity and Novel Magnetism,” vol. 33, pp. 2557-2580, 31 May 2020, https://doi.org/ 10.1007/s10948-020-05545-8.
[12] M. E. McHenry and D. E. Laughlin, “Magnetic properties of metals and alloys,” In: D. Laughlin, and K. Hono, (eds.), “Physical Metallurgy (5th Edition), pp. 1881-2008. Elsevier Inc., 2014.
[13] O. Clemens, A. J. Wright, K. S. Knight, P. R. Slater, “On the soft magnetic properties of the compounds of the series NaxMn4.5−x/ 2(VO4)3 and the magnetic structure of h.t.-Mn3(VO4)2(x = 1),” Journal: Dalton Transactions, vol. 42, issue 22, pp. 7894-7900, January 2013, https://doi.org/10.1039/C3DT32974G.
[14] A. P. Jadhav, A. Hussain, J. H. Lee, Y. K. Baek, C. J. Choi, and Y. S. Kang, “One pot synthesis of hard phase Nd2Fe14B nanoparticles and Nd2Fe14B/a-Fe nanocomposite magnetic materials,” New Journal of Chemistry, vol. 36, pp. 2405-2411, 2012.
[15] K. P. Thooyamani, V. Khanaa, R. Udayakumar, “Wireless Cellular Communication using 100 Nanometers Spintronics Device Based VLSI,” Middle-East Journal of Scientific Research, vol. 20, issue 12, pp. 2037-2041, January 2014.
[16] A. Fert, F. N. V. Dau, “Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators,” Comptes Rendus Physique, vol. 20, Issues 7-8, 2019, pp. 817-831, ISSN 1631-0705, https://doi.org/10.1016/j.crhy.2019.05.020.
[17] N. F. Mott, “The electrical conductivity of transition metals,” Proceedings of Royal Society of London, Serial A, Mathematical and Physical Science, vol. 153 (880), 1936, pp. 699-717.
[18] Q. H. Qin, H. X. Wei, and X. F. Han, “Linear magnetic field response spin valve with perpendicular anisotropy ferromagnet layer,” Journal of Applied Physics 103, 07E906, 2008, https://doi.org/10.1063/1.2830968.
[19] A. Jitariu, C. Ghemes, N. Lupu, and H. Chiriac, “Magnetic particles detection by using spin valve sensors and magnetic traps,” AIP Advances, vol. 7, 056616 January, 2017.
[20] E. Hall, “On a New Action of the Magnet on Electric Currents,” American Journal of Mathematics, vol. 2, issue 3, pp. 287-292, doi: 10.2307/2369245. JSTOR 2369245.
[21] M. I. Dyakonov and V. I. Perel, “Current-induced spin orientation of electrons in semiconductors,” Physics Letters A, vol. 35, no. 6, p. 459, 1971, doi:10.1016/0375-9601(71)90196-4.
[22] M. H. Bhuyan, “Analytical modeling of the pocket implanted nanoscale n-MOSFET,” PhD Thesis, Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 2011.
[23] F. Fang, Y. Yin, Q. Li, and G. Lüpke, “Spin-polarized current injection induced magnetic reconstruction at oxide interface,” Scientific Reports, vol. 7, 40048, 2017, https://doi.org/10.1038/srep40048.
[24] V. G. Kantser, “Materials and structures for semiconductor spintronics,” Journal of Optoelectronics and Advanced Materials, vol. 8, no. 2, April 2006, pp. 425-438.
[25] H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schönherr, and K. H. Ploog, “Room-Temperature Spin Injection from Fe into GaAs,” Physical Review Letters, American Physical Society, vol. 87, issue 1, pp. 016601-4, June 2001, 10.1103/PhysRevLett.87.016601.
[26] S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, “Advances in wide bandgap materials for semiconductor spintronics,” Materials Science and Engineering, vol. 40, no. 4, February 2003, pp. 137-168.
[27] H. Munekata, H. Ohno, S. von Molnar, Armin Segmüller, L. L. Chang, and L. Esaki, “Diluted magnetic III-V semiconductors,” Physical Review Letters, American Physical Society, vol. 63, issue 17, pp. 1849-1852, October 1989, doi: 10.1103/PhysRevLett.63.1849.
[28] W. Liu, P. K. J. Wong, Y. Xu, “Hybrid spintronic materials: Growth, structure and properties,” Progress in Materials Science, vol. 99, 2019, pp. 27-105, https://doi.org/10.1016/j.pmatsci.2018.08.001.
[29] T. Dietl and H. Ohno, “Ferromagnetic III-V and II-VI semiconductors,” MRS Bulletin, vol. 28, no. 10, October 2003, doi: 10.1557/mrs2003.211.
[30] C. Huang, J. Feng, F. Wu, D. Ahmed, B. Huang, H. Xiang, K. Deng, and E. Kan, “Toward Intrinsic Room-Temperature Ferromagnetism in Two-Dimensional Semiconductors,” Journal of American Chemical Society, vol. 140, issue 36, pp. 11519-11525, 2018, https://doi.org/10.1021/ jacs.8b07879.
[31] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-ya Koshihara, H. Koinuma, “Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide,” Science, vol. 291, issue 5505, pp. 854-856, 02 Feb 2001, doi: 10.1126/science.1056186.
[32] G. F. A. Malik, M. A. Kharadi, F. A. Khanday and N. Parveen, “Spin Field Effect Transistors and their applications: A survey,” Microelectronics Journal, ISSN: 0026-2692, vol. 106, p. 104924, December 2020, doi: https://doi.org/10.1016/j.mejo.2020.104924.
[33] M. Ziese and M. J. Thornton (eds.), “Spin Electronics”, Springer Verlag, Berlin, 2001.
[34] S, S. P. Parkin, “Spintronic Materials and Devices: Past, present and future!” IEEE, 2004.
[35] C. Tsang, R. E. Fontana, T. Lin, D. E. Heim, V. S. Speriosu, B. A. Gurney, M. L. Williams, “Design, fabrication and testing of spin-valve read heads for high density recording,” IEEE Transaction on Magn., vol. 30, issue 6, pp. 3801-3806, 1994. https://doi.org/10.1109/20.333909.
[36] T. Endoh, F. Iga, S. Ikeda, K. Miura, J. Hayakawa, M. Kamiyanagi, H. Hasegawa, T. Hanyu, and H. Ohno, “The Performance of Magnetic Tunnel Junction Integrated on the Back-End Metal Line of Complimentary Metal,” Japanese Journal of Applied Physics, vol. 49, no. 4, pp. 04DM06, 2010, 10.1143/jjap.49.04dm06.
[37] S. Yamamoto and S. Sugahara, “Nonvolatile Static Random Access Memory Using Magnetic Tunnel Junctions with Current-Induced Magnetization Switching Architecture,” Japanese Journal of Applied Physics, vol. 48, no. 4, pp. 043001, 10.1143/jjap.48.043001.
[38] https://www.psmarketresearch.com/market-analysis/spintronics-market, accessed on 24 April 2021.
[39] https://www.businesswire.com/news/home/20200409005311/en/Global-Spintronics-Market-Worth-12.84-Billion-by-2030---Rising-Demand-for-MRAMs-is-a-Key-Driving-Factor---ResearchAndMarkets.com, accessed on 24 April 2021.
[40] E. Y. Tsymbal and D. Pettifor, “Perspectives of giant magneto-resistance,” Solid State Physics, vol. 56, pp. 113-237, 2001.
[41] M. Sato, S. Umehara, and T. Ibusuki, “Tunneling magnetoresistance (TMR) device, its manufacture method, magnetic head and magnetic memory using TMR device,” US Patent, US8072714B2, USA, assigned to Fujitsu Ltd., 2011, https://patents.google.com/patent/US8072714.
[42] T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe junction,” Journal of Magnetism and Magnetic Materials, vol. 139, no. 3, pp. L231-L234, 1995.
[43] D. Wang, C. Nordman, J. M. Daughton, Z. Qian, and J. Fink, “70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference Layers,” IEEE Transaction on Magnetics, vol. 40, no. 4, pp. 2269-2271, Jul. 2004.
[44] I. Žutić, J. Fabian, and S. D. Sarma, “Spin-Polarized Transport in Inhomogeneous Magnetic Semiconductors: Theory of Magnetic/ Nonmagnetic p-n Junctions,” Physical Review Letters, vol. 88, 066603, 29 January 2002.
[45] A. H. MacDonald, P. Schiffer, and N. Samarth, “Ferromagnetic semiconductors: moving beyond (Ga,Mn)As,” Nature Materials, vol. 4, pp. 195-202, March 2005, https://doi.org/10.1038/nmat1325.
[46] D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, “Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor,” Science, American Association for the Advancement of Science, vol. 301, issue 5635, pp. 943-945, 15 August 2003, doi: 10.1126/science.1086608.
[47] S. Louis, V. S. Tiberkevich, J. Li, O. Prokopenko and A. N. Slavin, “Spin Torque Diode with Perpendicular Anisotropy Used for Passive Demodulation of FM Digital Signals,” IEEE International Magnetics Conference, 2018, pp. 1-2, doi: 10.1109/INTMAG.2018.8508129.
[48] J. S. Friedman, N. Rangaraju, Y. I. Ismail and B. W. Wessels, “A Spin-Diode Logic Family,” in IEEE Transactions on Nanotechnology, vol. 11, no. 5, pp. 1026-1032, Sept. 2012, doi: 10.1109/TNANO.2012.2211892.
[49] T. Manago and H. Akinaga, “Spin-polarized light emitting diode using metal/insulator/semiconductor structures,” Applied Physics Letters, vol. 81, 694, 2002; https://doi.org/10.1063/1.1496493.
[50] N. Nishizawa and H. Munekata, “Recent progress in spin-LED: realization of pure circular polarization EL at room temperature with current density of 10 A/cm2,” Proc. SPIE 11090, Spintronics XII, 1109034, 10 September 2019; https://doi.org/10.1117/12.2527862.
[51] S. Datta, “How we proposed the spin transistor,” Nature Electronics, vol. 1, p. 604, November 2018, doi: https://doi.org/10.1038/s41928-018-0163-4.
[52] S. Sugahara and J. Nitta, “Spin-Transistor Electronics: An Overview and Outlook,” in Proceedings of the IEEE, vol. 98, no. 12, pp. 2124-2154, Dec. 2010, doi: 10.1109/JPROC.2010.2064272.
[53] G. Wang, Z. Wang, J. Klein and W. Zhao, “Modeling for Spin-FET and Design of Spin-FET-Based Logic Gates,” IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1-6, Nov. 2017, Art no. 1600106, doi: 10.1109/TMAG.2017.2704881.
[54] S. Bandyopadhyaya and M. Cahay, “Are spin junction transistors suitable for signal processing?,” Applied Physics Letters, vol. 86, p. 133502, 2005, doi: https://doi.org/10.1063/1.1883722.
[55] D. Apalkov, B. Dieny and J. M. Slaughter, “Magnetoresistive Random Access Memory,” Proceedings of the IEEE, vol. 104, no. 10, pp. 1796-1830, October 2016, doi: 10.1109/JPROC.2016.2590142.
[56] L. Savtchenko, A. Korkin, B. N. Engel, N. D. Rizzo, J. A. Janesky, “Method of writing to scalable magnetoresistance random access memory element,” US Patent 6545906 B1/2003.
[57] U. K. Klostermann et al., “A Perpendicular Spin Torque Switching based MRAM for the 28 nm Technology Node,” IEEE International Electron Devices Meeting, 2007, pp. 187-190, doi: 10.1109/IEDM.2007.4418898.
[58] M. Durlam et al., “A 0.18 m 4Mb toggling MRAM,” IEEE International Electron Devices Meeting 2003, 2003, pp. 34.6.1-34.6.3, doi: 10.1109/IEDM.2003.1269448.
[59] C.-L. Su, R.-F. Huang, C.-W. Wu, C.-C. Hung, M.-J. Kao, Y.-J. Chang, W.-C. Wu, “MRAM defect analysis and fault modeling,” IEEE International Conference on Test, Charlotte, NC, USA, 26-28 October 2004, pp. 124-133, doi: 10.1109/TEST.2004.1386944.
[60] S. M. Thompson, “Magnetoresistive Heads: Physical Phenomena,” Editors: K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, P. Veyssière, Encyclopedia of Materials: Science and Technology, Elsevier, 2001, pp. 5095-5101, ISBN 9780080431529, https://doi.org/10.1016/B0-08-043152-6/00885-8.
[61] G.-X. Liu, L.-H. Shen, W.-Y. Ma, L. Yuan, “Electron-spin filter based on a novel magnetic nanostructure with zero average magnetic field,” Chinese Journal of Physics, ISSN 0577-9073, vol. 54, issue 1, February 2016, pp. 121-126, https://doi.org/10.1016/j.cjph.2016.03.013.
[62] S. Lyon, “Spin-based quantum computing using electrons on liquid helium,” Physical Review A, vol. 74, 2003, doi: 10.1103/PHYSREVA. 74.052338.
[63] M. Veldhorst, H. G. J. Eenink, C. H. Yang, and A. S. Dzurakm, “Silicon CMOS architecture for a spin-based quantum computer,” Nature Communication, vol. 8, 1766, 2017, https://doi.org/10.1038/s41467-017-01905-6.
[64] T. Dogaru and S. T. Smith, “Giant magnetoresistance-based eddy-current sensor,” IEEE Transactions on Magnetics, vol. 37, no. 5, pp. 3831-3838, September 2001, doi: 10.1109/20.952754.
[65] J. R. Childress and R. E. Fontana Jr., "Magnetic recording read head sensor technology," C. R. Physique, vol. 6, pp. 997–1012, 2005.
[66] Y. Ouyang, J. He, J. Hu, S. X. Wang, “A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications,” Sensors, vol. 12, no. 11, pp. 15520-15541, 9 November 2012, doi: 10.3390/s121115520.
[67] S. Lee, S. Choa, S. Lee and H. Shin, “Magneto-Logic Device Based on a Single-Layer Magnetic Tunnel Junction,” IEEE Transactions on Electron Devices, vol. 54, no. 8, pp. 2040-2044, August 2007, doi: 10.1109/TED.2007.900683.
[68] C. Sanid and S. Murugesh, “Spin-Transfer-Torque Driven Magneto-Logic Gates using Nano Spin-Valve Pillars,” Japanese Journal of Applied Physics, IOP Publishing, vol. 51, article 063001, 2012, doi: 10.1143/jjap.51.063001.
[69] A. K. Biswas, J. Atulasimha, S. Bandyopadhyay, “An error-resilient non-volatile magneto-elastic universal logic gate with ultralow energy-delay product,” Scientific Reports, vol. 4, article 07553, December 2014, doi: 10.1038/srep07553.
[70] D. E. Heim, R. E. Fontana, C. Tsang, V. S. Speriosu, B. A. Gurney and M. L. Williams, “Design And Operation Of Spin Valve Sensors,” Digests of the Magnetic Recording Conference 'Magnetic Recording Heads', Minneapolis, MN, USA, 13-15 September 1993, pp. 26-27, doi: 10.1109/MRC.1993.662395.
[71] C. Tannous and J. Gieraltowski, “Magnetic Properties: From Traditional to Spintronic,” In: S. Kasap and P. Capper, Springer Handbook of Electronic and Photonic Materials. Springer Handbooks, Springer, Cham. https://doi.org/10.1007/978-3-319-48933-9_4.
[72] C. M. Marian, “Spin–orbit coupling and intersystem crossing in molecules,” Journal of WIREs Computational Molecular Science, vol. 2, issue 2, April 2012, pp. 187-203, doi: https://doi.org/10.1002/wcms.83.
[73] P. Tyagi and C. Riso, “Molecular spintronics devices exhibiting properties of a solar cell,” Journal of Nanotechnology, vol. 30, no. 49, p. 495401, September 2019, doi: 10.1088/1361-6528/ab3ab0.
[74] K. Zhao, Y. Xing, J. Han, J. Feng, W. Shi, B. Zhang, and Z. Zeng, “Magnetic transport property of NiFe/WSe2/NiFe spin valve structure,” Journal of Magnetism and Magnetic Materials, ISSN 0304-8853, vol. 432, 2017, pp. 10-13, https://doi.org/10.1016/j.jmmm.2017.01.066.
[75] Y. Deng, M. Yang, Y. Ji, and K. Wang, “Estimating spin Hall angle in heavy metal/ferro-magnet hetero-structures,” Journal of Magnetism and Magnetic Materials, ISSN 0304-8853, vol. 496, 2020, p. 165920, https://doi.org/10.1016/j.jmmm.2019.165920.
[76] M. Matsuo, J. Ieda, K. Harii, E. Saitoh, and S. Maekawa, “Mechanical generation of spin current by spin-rotation coupling,” Physical Review B, American Physical Society, vol. 87, issue 18, pp. 180402-4, May 2013, doi: 10.1103/PhysRevB.87.180402.
[77] M. Xu, J. Puebla, F. Auvray, B. Rana, K. Kondou, and Y. Otani, “Inverse Edelstein effect induced by magnon-phonon coupling,” Physical Review B, American Physical Society, vol. 97, issue 18, pp. 180301-4, May 2018, doi: 10.1103/PhysRevB.97.180301.
[78] N. Locatelli, V. Cros and J. Grollier, “Spin-torque building blocks,” Nature Materials, vol. 13, pp. 11-20, 2014, doi: https://doi.org/ 10.1038/nmat3823
[79] Z. Zeng, G. Finocchio, B. Zhang, et al. “Ultralow-current-density and bias-field-free spin-transfer nano-oscillator,” Scientific Report, Nature, vol. 3, p. 1426, 2013, doi: https://doi.org/10.1038/srep01426.
[80] J. Torrejon, M. Riou, F. Araujo, et al., “Neuromorphic computing with nanoscale spintronic oscillators,” Nature, vol. 547, pp. 428-431, 2017, doi: https://doi.org/10.1038/nature23011.
[81] M. Romera, P. Talatchian, S. Tsunegi, et al., “Vowel recognition with four coupled spin-torque nano-oscillators,” Nature, vol. 563, pp. 230-234, 2018, doi: https://doi.org/10.1038/s41586-018-0632-y.
[82] D. E. Nikonov and I. A. Young, “Benchmarking Delay and Energy of Neural Inference Circuits,” IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 5, no. 2, pp. 75-84, December 2019, doi: 10.1109/JXCDC.2019.2956112.
[83] X. Liu, K. H. Lam, K. Zhu, C. Zheng, X. Li, Y. Du, C. Liu, and P. W. T. Pong, “Overview of Spintronic Sensors With Internet of Things for Smart Living,” IEEE Transactions on Magnetics, vol. 55, no. 11, pp. 1-22, Nov. 2019, Art no. 0800222, doi: 10.1109/TMAG.2019.2927457.