Preparation and Properties of Biopolymer from L-Lactide (LL) and ε-Caprolactone (CL)

Biopolymers have gained much attention as ecofriendly alternatives to petrochemical-based plastics because they are biodegradable and can be produced from renewable feedstocks. One class of biopolyester with many potential environmentally friendly applications is polylactic acid (PLA) and polycaprolactone (PCL). The PLA/PCL biodegradable copolyesters were synthesized by bulk ring-opening copolymerization of successively added Llactide (LL) and ε-caprolactone (CL) in the presence of toluene, using 1-hexanol as initiator and stannous octoate (Sn(Oct)2) as catalyst. Reaction temperature, reaction time and amount of catalyst were evaluated to obtain optimum reaction conditions. The results showed that the %conversion increased with increases in reaction temperature and reaction time, but after a critical amount of catalyst was reached the %conversion decreased. The yield of PLA/PCL biopolymer achieved 98.02% at the reaction temperature 160 °C, amount of catalyst 0.3 mol% and reaction time of 48 h. In addition, the thermal properties of the product were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

A Geometrical Perspective on the Insulin Evolution

We study the molecular evolution of insulin from metric geometry point of view. In mathematics, and in particular in geometry, distances and metrics between objects are of fundamental importance. Using a weaker notion than the classical distance, namely the weighted quasi-metrics, one can study the geometry of biological sequences (DNA, mRNA, or proteins) space. We analyze from geometrical point of view a family of 60 insulin homologous sequences ranging on a large variety of living organisms from human to the nematode C. elegans. We show that the distances between sequences provide important information about the evolution and function of insulin.

A Novel GNSS Integrity Augmentation System for Civil and Military Aircraft

This paper presents a novel Global Navigation Satellite System (GNSS) Avionics Based Integrity Augmentation (ABIA) system architecture suitable for civil and military air platforms, including Unmanned Aircraft Systems (UAS). Taking the move from previous research on high-accuracy Differential GNSS (DGNSS) systems design, integration and experimental flight test activities conducted at the Italian Air Force Flight Test Centre (CSV-RSV), our research focused on the development of a novel approach to the problem of GNSS ABIA for mission- and safety-critical air vehicle applications and for multi-sensor avionics architectures based on GNSS. Detailed mathematical models were developed to describe the main causes of GNSS signal outages and degradation in flight, namely: antenna obscuration, multipath, fading due to adverse geometry and Doppler shift. Adopting these models in association with suitable integrity thresholds and guidance algorithms, the ABIA system is able to generate integrity cautions (predictive flags) and warnings (reactive flags), as well as providing steering information to the pilot and electronic commands to the aircraft/UAS flight control systems. These features allow real-time avoidance of safety-critical flight conditions and fast recovery of the required navigation performance in case of GNSS data losses. In other words, this novel ABIA system addresses all three cornerstones of GNSS integrity augmentation in mission- and safety-critical applications: prediction (caution flags), reaction (warning flags) and correction (alternate flight path computation).

Synthesis of Activated Carbon Using Agricultural Wastes from Biodiesel Production

In this research, the optimum conditions for the synthesis of activated carbon from biodiesel wastes such as palm shells (PS) and Jatropha curcas fruit shells (JS) by chemical activation method using potassium hydroxide (KOH) as an activating agent under nitrogen atmosphere were investigated. The effects of soaking in hydrofluoric acid (HF), impregnation ratio, activation temperature and activation time on adsorption capacity of methylene blue (MB) and iodine (I2) solution were examined. The results showed that HF-treated activated carbons exhibited higher adsorption capacities by eliminating ash residues, which might fill up the pores. In addition, the adsorption capacities of methylene blue and iodine solution were also significantly influenced by the types of raw materials, the activation temperature and the activation time. The highest adsorption capacity of methylene blue 257.07mg/g and iodine 847.58mg/g were obtained from Jatropha curcas wastes.

Experimental Study on Quasi-Static Response of Multi-layer Sandwich Composite Structures

In this paper the effects of adding an extra layer within a sandwich panel and core- types in top and bottom cores on quasi- static loading are studied experimentally. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Quasi- static tests were done by ZWICK testing machine on fully backed specimens with two foam cores, Poly Urethane Rigid (PUR) and Poly Vinyl Chloride (PVC). It was found that the core material type has made significant role on improving the sandwich panel’s behavior compared with the effect of extra layer location.

Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Complex Dynamic Behaviors in an Ivlev-type Stage-structured Predator-prey System Concerning Impulsive Control Strategy

An Ivlev-type predator-prey system and stage-structured for predator concerning impulsive control strategy is considered. The conditions for the locally asymptotically stable prey-eradication periodic solution is obtained, by using Floquet theorem and small amplitude perturbation skills——when the impulsive period is less than the critical value. Otherwise, the system is permanence. Numerical examples show that the system considered has more complicated dynamics, including high-order quasi-periodic and periodic oscillating, period-doubling and period-halving bifurcation, chaos and attractor crisis, etc. Finally, the biological implications of the results and the impulsive control strategy are discussed.

Characterization of Solutions of Nonsmooth Variational Problems and Duality

In this paper, we introduce a new class of nonsmooth pseudo-invex and nonsmooth quasi-invex functions to non-smooth variational problems. By using these concepts, numbers of necessary and sufficient conditions are established for a nonsmooth variational problem wherein Clarke’s generalized gradient is used. Also, weak, strong and converse duality are established.

Study of Heat Transfer of Nanofluids in a Circular Tube

Heat transfer behavior of three different types of nanofluids flowing through a horizontal tube under laminar regime has been investigated numerically. The wall of tube is maintained at constant temperature. Al2O3-water, CuO-water and TiO2-water are used with different Reynolds number and different volume fraction. The numerical results of heat transfer indicate that the Nusselt number of nanofluids is larger than that of the base fluid. The Pressure loss coefficient decreases by increasing Reynolds number for all types of nanofluids. Results of Nusselt number enhancement and pressure loss coefficient enhancement indicate that Al2O3 nanoparticules give the best results in term of thermal-hydrolic properties.

Numerical Solution of Hammerstein Integral Equations by Using Quasi-Interpolation

In this paper first, a numerical method based on quasiinterpolation for solving nonlinear Fredholm integral equations of the Hammerstein-type is presented. Then, we approximate the solution of Hammerstein integral equations by Nystrom’s method. Also, we compare the methods with some numerical examples.

OWA Operators in Generalized Distances

Different types of aggregation operators such as the ordered weighted quasi-arithmetic mean (Quasi-OWA) operator and the normalized Hamming distance are studied. We introduce the use of the OWA operator in generalized distances such as the quasiarithmetic distance. We will call these new distance aggregation the ordered weighted quasi-arithmetic distance (Quasi-OWAD) operator. We develop a general overview of this type of generalization and study some of their main properties such as the distinction between descending and ascending orders. We also consider different families of Quasi-OWAD operators such as the Minkowski ordered weighted averaging distance (MOWAD) operator, the ordered weighted averaging distance (OWAD) operator, the Euclidean ordered weighted averaging distance (EOWAD) operator, the normalized quasi-arithmetic distance, etc.

The Induced Generalized Hybrid Averaging Operator and its Application in Financial Decision Making

We present the induced generalized hybrid averaging (IGHA) operator. It is a new aggregation operator that generalizes the hybrid averaging (HA) by using generalized means and order inducing variables. With this formulation, we get a wide range of mean operators such as the induced HA (IHA), the induced hybrid quadratic averaging (IHQA), the HA, etc. The ordered weighted averaging (OWA) operator and the weighted average (WA) are included as special cases of the HA operator. Therefore, with this generalization we can obtain a wide range of aggregation operators such as the induced generalized OWA (IGOWA), the generalized OWA (GOWA), etc. We further generalize the IGHA operator by using quasi-arithmetic means. Then, we get the Quasi-IHA operator. Finally, we also develop an illustrative example of the new approach in a financial decision making problem. The main advantage of the IGHA is that it gives a more complete view of the decision problem to the decision maker because it considers a wide range of situations depending on the operator used.

Development and Usability Evaluation of Platform Independent Mobile Learning Tool(M-LT)

Mobile learning (M-learning) integrates mobile devices and wireless computing technology to enhance the current conventional learning system. However, there are constraints which are affecting the implementation of platform and device independent M-learning. The main aim of this research is to fulfill the following main objectives: to develop platform independent mobile learning tool (M-LT) for structured programming course, and evaluate its effectiveness and usability using ADDIE instructional design model (ISD) as M-LT life cycle. J2ME (Java 2 micro edition) and XML (Extensible Markup Language) were used to develop platform independent M-LT. It has two modules lecture materials and quizzes. This study used Quasi experimental design to measure effectiveness of the tool. Meanwhile, questionnaire is used to evaluate the usability of the tool. Finally, the results show that the system was effective and also usability evaluation was positive.

Optimal Control Problem, Quasi-Assignment Problem and Genetic Algorithm

In this paper we apply one of approaches in category of heuristic methods as Genetic Algorithms for obtaining approximate solution of optimal control problems. The firs we convert optimal control problem to a quasi Assignment Problem by defining some usual characters as defined in Genetic algorithm applications. Then we obtain approximate optimal control function as an piecewise constant function. Finally the numerical examples are given.

Secret Communications Using Synchronized Sixth-Order Chuas's Circuits

In this paper, we use Generalized Hamiltonian systems approach to synchronize a modified sixth-order Chua's circuit, which generates hyperchaotic dynamics. Synchronization is obtained between the master and slave dynamics with the slave being given by an observer. We apply this approach to transmit private information (analog and binary), while the encoding remains potentially secure.

Prime(Semiprime) Fuzzy h-ideal in Γ-hemiring

The notions of prime(semiprime) fuzzy h-ideal(h-biideal, h-quasi-ideal) in Γ-hemiring are introduced and some of their characterizations are obtained by using "belongingness(∈)" and "quasi - coincidence(q)". Cartesian product of prime(semiprime) fuzzy h-ideals of Γ-hemirings are also investigated.

Use of Persuasive Technology to Change End-Users- IT Security Aware Behaviour: A Pilot Study

Persuasive technology has been applied in marketing, health, environmental conservation, safety and other domains and is found to be quite effective in changing people-s attitude and behaviours. This research extends the application domains of persuasive technology to information security awareness and uses a theory-driven approach to evaluate the effectiveness of a web-based program developed based on the principles of persuasive technology to improve the information security awareness of end users. The findings confirm the existence of a very strong effect of the webbased program in raising users- attitude towards information security aware behavior. This finding is useful to the IT researchers and practitioners in developing appropriate and effective education strategies for improving the information security attitudes for endusers.

Development of Admire Longitudinal Quasi-Linear Model by using State Transformation Approach

This paper presents a longitudinal quasi-linear model for the ADMIRE model. The ADMIRE model is a nonlinear model of aircraft flying in the condition of high angle of attack. So it can-t be considered to be a linear system approximately. In this paper, for getting the longitudinal quasi-linear model of the ADMIRE, a state transformation based on differentiable functions of the nonscheduling states and control inputs is performed, with the goal of removing any nonlinear terms not dependent on the scheduling parameter. Since it needn-t linear approximation and can obtain the exact transformations of the nonlinear states, the above-mentioned approach is thought to be appropriate to establish the mathematical model of ADMIRE. To verify this conclusion, simulation experiments are done. And the result shows that this quasi-linear model is accurate enough.

Meaning Chasing Kiddies: Children-s Perception of Metaphors Used in Printed Advertisements

Today-s children, who are born into a more colorful, more creative, more abstract and more accessible communication environment than their ancestors as a result of dizzying advances in technology, have an interesting capacity to perceive and make sense of the world. Millennium children, who live in an environment where all kinds of efforts by marketing communication are more intensive than ever are, from their early childhood on, subject to all kinds of persuasive messages. As regards advertising communication, it outperforms all the other marketing communication efforts in creating little consumer individuals and, as a result of processing of codes and signs, plays a significant part in building a world of seeing, thinking and understanding for children. Children who are raised with metaphorical expressions such as tales and riddles also meet that fast and effective meaning communication in advertisements. Children-s perception of metaphors, which help grasp the “product and its promise" both verbally and visually and facilitate association between them is the subject of this study. Stimulating and activating imagination, metaphors have unique advantages in promoting the product and its promise especially in regard to print advertisements, which have certain limitations. This study deals comparatively with both literal and metaphoric versions of print advertisements belonging to various product groups and attempts to discover to what extent advertisements are liked, recalled, perceived and are persuasive. The sample group of the study, which was conducted in two elementary schools situated in areas that had different socioeconomic features, consisted of children aged 12.

Static and Dynamic Three-Dimensional Finite Element Analysis of Pelvic Bone

The complex shape of the human pelvic bone was successfully imaged and modeled using finite element FE processing. The bone was subjected to quasi-static and dynamic loading conditions simulating the effect of both weight gain and impact. Loads varying between 500 – 2500 N (~50 – 250 Kg of weight) was used to simulate 3D quasi-static weight gain. Two different 3D dynamic analyses, body free fall at two different heights (1 and 2 m) and forced side impact at two different velocities (20 and 40 Km/hr) were also studied. The computed resulted stresses were compared for the four loading cases, where Von Misses stresses increases linearly with the weight gain increase under quasi-static loading. For the dynamic models, the Von Misses stress history behaviors were studied for the affected area and effected load with respect to time. The normalization Von Misses stresses with respect to the applied load were used for comparing the free fall and the forced impact load results. It was found that under the forced impact loading condition an over lapping behavior was noticed, where as for the free fall the normalized Von Misses stresses behavior was found to nonlinearly different. This phenomenon was explained through the energy dissipation concept. This study will help designers in different specialization in defining the weakest spots for designing different supporting systems.