Characterization of Brewery Wastewater Composition

Industries produce millions of cubic meters of effluent every year and the wastewater produced may be released into the surrounding water bodies, treated on-site or at municipal treatment plants. The determination of organic matter in the wastewater generated is very important to avoid any negative effect on the aquatic ecosystem. The scope of the present work is to assess the physicochemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD5 and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of peak period of beer production on the water usage.

The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis

Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structureborne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using onboard are presented. By conducting a Statistical Energy Analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The conclusion on effective damping treatment in the offshore platform is made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.

Loss Analysis by Loading Conditions of Distribution Transformers

Efficient use of energy, the increase in demand of energy and also with the reduction of natural energy sources, has improved its importance in recent years. Most of the losses in the system from electricity produced until the point of consumption is mostly composed by the energy distribution system. In this study, analysis of the resulting loss in power distribution transformer and distribution power cable is realized which are most of the losses in the distribution system. Transformer losses in the real distribution system are analyzed by CYME Power Engineering Software program. These losses are disclosed for different voltage levels and different loading conditions.

High Gain Circularly Polarized Wire Antenna for DSRC Applications

In this communication, a low-cost circularly polarized wire antenna exhibiting improved gain performance for Dedicated Short Range Communications (DSRC), vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications is presented. The proposed antenna comprises a Y-shaped quarterwavelength monopole antenna surrounded by two iterations of eight conductive arched walls acting as parasitic elements to enhance the overall antenna gain and to shape the radiation pattern in the H-plane. A hemispherical radome shell is added to protect the antenna structure and its effect on the antenna performance is discussed. The designed antenna demonstrates antenna gain of 8.2 dB with omnidirectional far-field radiation pattern in the H-plane. The gain of the proposed antenna is also compared with the characteristic of the stand-alone Y-shaped monopole to highlight the advantages of the proposed approach.

Controlling Water Temperature during the Electrocoagulation Process Using an Innovative Flow Column-Electrocoagulation Reactor

A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 350C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-350C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 350C to the vicinity of 280C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.80C and from 29.8 to 31.90C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 280C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 350C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density.

Constitutionalisation and Judicial Protection of Social Rights - An Approach to Latin American Case

Latin America is probably the region with greater social inequality, contrary to the amount of rights enshrined in their constitutions. In the last decade of the twentieth century, the area resulted in significant changes to democratization and constitutional changes. Through low-key public policy, political leaders activated participation in the culture of human rights. The struggle for social rights in Latin America has been a constant regulation. His consecration at the constitutional level has chained search application. The constitutionalization and judicial protection of these rights have been crucial in countries like Argentina, Venezuela, Peru and Colombia. This paper presents an analytical view on the constitutionalization of social rights in the Latin American context and its justiciability.

Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX

This paper presents the results obtained by numerical simulation using the software ANSYS CFX-CFD for the air pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion in an electric thermal power plant. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. It is considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations it is measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that the average concentration are calculated, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Competitive Advantage Challenges Affecting the Apparel Manufacturing Industry of South Africa (AMISA): Application of Porter’s Factor Conditions

This paper applied factor conditions from Porter’s Diamond Model (1990) to understand the various challenges facing the AMISA. Factor conditions highlighted in Porter’s model are grouped into two groups namely, basic and advance factors. Two AMISA associations representing over 10 000 employees were interviewed. The largest Clothing, Textiles and Leather (CTL) apparel retail group was also interviewed with a government department implementing the industrialization policy were interviewed. The paper points out that AMISA have basic factor conditions necessary for competitive advantage in the apparel industries. However advance factor creation has proven to be a challenge for AMISA, Higher Education Institutions (HEIs) and government. Poor infrastructural maintenance has contributed to high manufacturing costs and poor quick response technologies. The use of Porter’s Factor Conditions as a tool to analyze the sector’s competitive advantage challenges and opportunities has increased knowledge regarding factors that limit the AMISA’s competitiveness. It is therefore argued that other studies on Porter’s Diamond model factors like Demand conditions, Firm strategy, structure and rivalry and Related and supporting industries can be used to analyze the situation of the AMISA for the purposes of improving competitive advantage.

Associations between Game Users and Life Satisfaction: Role of Self-Esteem, Self-Efficacy and Social Capital

This study makes an integrated investigation on how life satisfaction is associated with the Korean game users' psychological variables (self-esteem, game and life self- efficacy), social variables (bonding and bridging social capital), and demographic variables (age, gender). The data used for the empirical analysis came from a representative sample survey conducted in South Korea. Results show that self-esteem and game efficacy were an important antecedent to the degree of users’ life satisfaction. Both bonding social capital and bridging social capital enhance the level of the users’ life satisfaction. The importance of perspectives as well as their implications for the game users and further associated research is explored.

Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization

This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.

LED Lighting Interviews and Assessment in Forest Machines

The objective of the study is to assess the implementation of LED lighting into forest machine work in the dark. In addition, the paper includes a wide variety of important and relevant safety and health parameters. In modern, computerized work in the cab of forest machines, artificial illumination is a demanding task when performing duties, such as the visual inspections of wood and computer calculations. We interviewed entrepreneurs and gathered the following as the most pertinent themes: (1) safety, (2) practical problems, and (3) work with LED lighting. The most important comments were in regards to the practical problems of LED lighting. We found indications of technical problems in implementing LED lighting, like snow and dirt on the surfaces of lamps that dim the emission of light. Moreover, service work in the dark forest is dangerous and increases the risks of on-site accidents. We also concluded that the amount of blue light to the eyes should be assessed, especially, when the drivers are working in a semi-dark cab.

Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation

This paper presents thermal annealing de-wetting technique for the preparation of porous metal membrane for Thin Film Encapsulation (TFE) application. Thermal annealing de-wetting experimental results reveal that pore size formation in porous metal membrane depend upon i.e. 1. The substrate at which metal is deposited, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for formation of porous metal membrane. In order to demonstrate this technique, Silver (Ag) was used as a metal for preparation of porous metal membrane on amorphous silicon (a-Si) and silicon oxide. The annealing of the silver thin film of various thicknesses was performed at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for TFE application, the porous silver film prepared on amorphous silicon (a- Si) and silicon oxide was released using XeF2 and VHF, respectively. Finally, guide line and structures are suggested to use this porous membrane for robust TFE application.

Multi-Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics

The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges task in such network. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi Agent System (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.

Energy Aware Adhoc On-demand Multipath Distance Vector Protocol for QoS Routing

Mobile Adhoc Networks (MANETs) are infrastructure-less, dynamic network of collections of wireless mobile nodes communicating with each other without any centralized authority. A MANET is a mobile device of interconnections through wireless links, forming a dynamic topology. Routing protocols have a big role in data transmission across a network. Routing protocols, two major classifications are unipath and multipath. This study evaluates performance of an on-demand multipath routing protocol named Adhoc On-demand Multipath Distance Vector routing (AOMDV). This study proposes Energy Aware AOMDV (EAAOMDV) an extension of AOMDV which decreases energy consumed on a route.

The Potential Effect of Biochar Application on Microbial Activities and Availability of Mineral Nitrogen in Arable Soil Stressed by Drought

Application of biochar to arable soils represents a new approach to restore soil health and quality. Many studies reported the positive effect of biochar application on soil fertility and development of soil microbial community. Moreover biochar may affect the soil water retention, but this effect has not been sufficiently described yet. Therefore this study deals with the influence of biochar application on: microbial activities in soil, availability of mineral nitrogen in soil for microorganisms, mineral nitrogen retention and plant production. To demonstrate the effect of biochar addition on the above parameters, the pot experiment was realized. As a model crop, Lactuca sativa L. was used and cultivated from December 10th 2014 till March 22th 2015 in climate chamber in thoroughly homogenized arable soil with and without addition of biochar. Five variants of experiment (V1 – V5) with different regime of irrigation were prepared. Variants V1 – V2 were fertilized by mineral nitrogen, V3 – V4 by biochar and V5 was a control. The significant differences were found only in plant production and mineral nitrogen retention. The highest content of mineral nitrogen in soil was detected in V1 and V2, about 250 % in comparison with the other variants. The positive effect of biochar application on soil fertility, mineral nitrogen availability was not found. On the other hand results of plant production indicate the possible positive effect of biochar application on soil water retention.

Energy Performance of Buildings Due to Downscaled Seasonal Models

The current paper presents an extensive bottom-up framework for assessing building sector-specific vulnerability to climate change: energy supply and demand. The research focuses on the application of downscaled seasonal models for estimating energy performance of buildings in Greece. The ARW-WRF model has been set-up and suitably parameterized to produce downscaled climatological fields for Greece, forced by the output of the CFSv2 model. The outer domain, D01/Europe, included 345 x 345 cells of horizontal resolution 20 x 20 km2 and the inner domain, D02/Greece, comprised 180 x 180 cells of 5 x 5 km2 horizontal resolution. The model run has been setup for a period with a forecast horizon of 6 months, storing outputs on a six hourly basis.

Diagnostic Contribution of the MMSE-2:EV in the Detection and Monitoring of the Cognitive Impairment: Case Studies

The goal of this paper is to present the diagnostic contribution that the screening instrument, Mini-Mental State Examination-2: Expanded Version (MMSE-2:EV), brings in detecting the cognitive impairment or in monitoring the progress of degenerative disorders. The diagnostic signification is underlined by the interpretation of the MMSE-2:EV scores, resulted from the test application to patients with mild and major neurocognitive disorders. The cases were selected from current practice, in order to cover vast and significant neurocognitive pathology: mild cognitive impairment, Alzheimer’s disease, vascular dementia, mixed dementia, Parkinson’s disease, conversion of the mild cognitive impairment into Alzheimer’s disease. The MMSE-2:EV version was used: it was applied one month after the initial assessment, three months after the first reevaluation and then every six months, alternating the blue and red forms. Correlated with age and educational level, the raw scores were converted in T scores and then, with the mean and the standard deviation, the z scores were calculated. The differences of raw scores between the evaluations were analyzed from the point of view of statistic signification, in order to establish the progression in time of the disease. The results indicated that the psycho-diagnostic approach for the evaluation of the cognitive impairment with MMSE-2:EV is safe and the application interval is optimal. In clinical settings with a large flux of patients, the application of the MMSE-2:EV is a safe and fast psychodiagnostic solution. The clinicians can draw objective decisions and for the patients: it does not take too much time and energy, it does not bother them and it doesn’t force them to travel frequently.

On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region

This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.

The Influence of National Culture on Business Negotiations: An Exploratory Study of Venezuelan and British Managers

Significant attention has recently been paid to the cross-cultural negotiations due to the growth of international businesses. Despite the substantial body of literature examining the influence of National Culture (NC) dimensions on negotiations, there is a lack of studies comparing the influence of NC in Latin America with a Western European countries, In particular, an extensive review of the literature revealed that a contribution to knowledge would be derived from the comparison of the influence of NC dimensions on negotiations in UK and Venezuela. The primary data was collected through qualitative interviews, to obtain an insight about the perceptions and beliefs of Venezuelan and British business managers about their negotiating styles. The findings of this study indicated that NC has a great influence on the negotiating styles. In particular, Venezuelan and British managers demonstrated to have opposed negotiating styles, affecting the way they communicate, approach people and their willingness to take risks.

Friction Estimation and Compensation for Steering Angle Control for Highly Automated Driving

This contribution presents a friction estimator for industrial purposes which identifies Coulomb friction in a steering system. The estimator only needs a few, usually known, steering system parameters. Friction occurs on almost every mechanical system and has a negative influence on high-precision position control. This is demonstrated on a steering angle controller for highly automated driving. In this steering system the friction induces limit cycles which cause oscillating vehicle movement when the vehicle follows a given reference trajectory. When compensating the friction with the introduced estimator, limit cycles can be suppressed. This is demonstrated by measurements in a series vehicle.